Share to: share facebook share twitter share wa share telegram print page

Computer memory

DDR4 SDRAM module. As of 2021, over 90 percent of computer memory used in PCs and servers was of this type.[1]

Computer memory stores information, such as data and programs, for immediate use in the computer.[2] The term memory is often synonymous with the terms RAM, main memory, or primary storage. Archaic synonyms for main memory include core (for magnetic core memory) and store.[3]

Main memory operates at a high speed compared to mass storage which is slower but less expensive per bit and higher in capacity. Besides storing opened programs and data being actively processed, computer memory serves as a mass storage cache and write buffer to improve both reading and writing performance. Operating systems borrow RAM capacity for caching so long as not needed by running software.[4] If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called virtual memory.

Modern computer memory is implemented as semiconductor memory,[5][6] where data is stored within memory cells built from MOS transistors and other components on an integrated circuit.[7] There are two main kinds of semiconductor memory: volatile and non-volatile. Examples of non-volatile memory are flash memory and ROM, PROM, EPROM, and EEPROM memory. Examples of volatile memory are dynamic random-access memory (DRAM) used for primary storage and static random-access memory (SRAM) used mainly for CPU cache.

Most semiconductor memory is organized into memory cells each storing one bit (0 or 1). Flash memory organization includes both one bit per memory cell and a multi-level cell capable of storing multiple bits per cell. The memory cells are grouped into words of fixed word length, for example, 1, 2, 4, 8, 16, 32, 64 or 128 bits. Each word can be accessed by a binary address of N bits, making it possible to store 2N words in the memory.

History

Historical lowest retail price of computer memory and storage
Electromechanical memory used in the IBM 602, an early punch multiplying calculator
Detail of the back of a section of ENIAC, showing vacuum tubes
Williams tube used as memory in the IAS computer c. 1951
8 GB microSDHC card on top of 8 bytes of magnetic-core memory (1 core is 1 bit.)

In the early 1940s, memory technology often permitted a capacity of a few bytes. The first electronic programmable digital computer, the ENIAC, using thousands of vacuum tubes, could perform simple calculations involving 20 numbers of ten decimal digits stored in the vacuum tubes.

The next significant advance in computer memory came with acoustic delay-line memory, developed by J. Presper Eckert in the early 1940s. Through the construction of a glass tube filled with mercury and plugged at each end with a quartz crystal, delay lines could store bits of information in the form of sound waves propagating through the mercury, with the quartz crystals acting as transducers to read and write bits. Delay-line memory was limited to a capacity of up to a few thousand bits.

Two alternatives to the delay line, the Williams tube and Selectron tube, originated in 1946, both using electron beams in glass tubes as means of storage. Using cathode-ray tubes, Fred Williams invented the Williams tube, which was the first random-access computer memory. The Williams tube was able to store more information than the Selectron tube (the Selectron was limited to 256 bits, while the Williams tube could store thousands) and was less expensive. The Williams tube was nevertheless frustratingly sensitive to environmental disturbances.

Efforts began in the late 1940s to find non-volatile memory. Magnetic-core memory allowed for recall of memory after power loss. It was developed by Frederick W. Viehe and An Wang in the late 1940s, and improved by Jay Forrester and Jan A. Rajchman in the early 1950s, before being commercialized with the Whirlwind I computer in 1953.[8] Magnetic-core memory was the dominant form of memory until the development of MOS semiconductor memory in the 1960s.[9]

The first semiconductor memory was implemented as a flip-flop circuit in the early 1960s using bipolar transistors.[9] Semiconductor memory made from discrete devices was first shipped by Texas Instruments to the United States Air Force in 1961. The same year, the concept of solid-state memory on an integrated circuit (IC) chip was proposed by applications engineer Bob Norman at Fairchild Semiconductor.[10] The first bipolar semiconductor memory IC chip was the SP95 introduced by IBM in 1965.[9] While semiconductor memory offered improved performance over magnetic-core memory, it remain larger and more expensive and did not displace magnetic-core memory until the late 1960s.[9][11]

MOS memory

The invention of the metal–oxide–semiconductor field-effect transistor (MOSFET) enabled the practical use of metal–oxide–semiconductor (MOS) transistors as memory cell storage elements. MOS memory was developed by John Schmidt at Fairchild Semiconductor in 1964.[12] In addition to higher performance, MOS semiconductor memory was cheaper and consumed less power than magnetic core memory.[13] In 1965, J. Wood and R. Ball of the Royal Radar Establishment proposed digital storage systems that use CMOS (complementary MOS) memory cells, in addition to MOSFET power devices for the power supply, switched cross-coupling, switches and delay-line storage.[14] The development of silicon-gate MOS integrated circuit (MOS IC) technology by Federico Faggin at Fairchild in 1968 enabled the production of MOS memory chips.[15] NMOS memory was commercialized by IBM in the early 1970s.[16] MOS memory overtook magnetic core memory as the dominant memory technology in the early 1970s.[13]

The two main types of volatile random-access memory (RAM) are static random-access memory (SRAM) and dynamic random-access memory (DRAM). Bipolar SRAM was invented by Robert Norman at Fairchild Semiconductor in 1963,[9] followed by the development of MOS SRAM by John Schmidt at Fairchild in 1964.[13] SRAM became an alternative to magnetic-core memory, but requires six transistors for each bit of data.[17] Commercial use of SRAM began in 1965, when IBM introduced their SP95 SRAM chip for the System/360 Model 95.[9]

Toshiba introduced bipolar DRAM memory cells for its Toscal BC-1411 electronic calculator in 1965.[18][19] While it offered improved performance, bipolar DRAM could not compete with the lower price of the then dominant magnetic-core memory.[20] MOS technology is the basis for modern DRAM. In 1966, Robert H. Dennard at the IBM Thomas J. Watson Research Center was working on MOS memory. While examining the characteristics of MOS technology, he found it was possible to build capacitors, and that storing a charge or no charge on the MOS capacitor could represent the 1 and 0 of a bit, while the MOS transistor could control writing the charge to the capacitor. This led to his development of a single-transistor DRAM memory cell.[17] In 1967, Dennard filed a patent for a single-transistor DRAM memory cell based on MOS technology.[21] This led to the first commercial DRAM IC chip, the Intel 1103 in October 1970.[22][23][24] Synchronous dynamic random-access memory (SDRAM) later debuted with the Samsung KM48SL2000 chip in 1992.[25][26]

The term memory is also often used to refer to non-volatile memory including read-only memory (ROM) through modern flash memory. Programmable read-only memory (PROM) was invented by Wen Tsing Chow in 1956, while working for the Arma Division of the American Bosch Arma Corporation.[27][28] In 1967, Dawon Kahng and Simon Sze of Bell Labs proposed that the floating gate of a MOS semiconductor device could be used for the cell of a reprogrammable ROM, which led to Dov Frohman of Intel inventing EPROM (erasable PROM) in 1971.[29] EEPROM (electrically erasable PROM) was developed by Yasuo Tarui, Yutaka Hayashi and Kiyoko Naga at the Electrotechnical Laboratory in 1972.[30] Flash memory was invented by Fujio Masuoka at Toshiba in the early 1980s.[31][32] Masuoka and colleagues presented the invention of NOR flash in 1984,[33] and then NAND flash in 1987.[34] Toshiba commercialized NAND flash memory in 1987.[35][36][37]

Developments in technology and economies of scale have made possible so-called very large memory (VLM) computers.[37]

Volatile memory

Various memory modules containing different types of DRAM (from top to bottom): DDR SDRAM, SDRAM, EDO DRAM, and FPM DRAM

Volatile memory is computer memory that requires power to maintain the stored information. Most modern semiconductor volatile memory is either static RAM (SRAM) or dynamic RAM (DRAM).[a] DRAM dominates for desktop system memory. SRAM is used for CPU cache. SRAM is also found in small embedded systems requiring little memory.

SRAM retains its contents as long as the power is connected and may use a simpler interface, but commonly uses six transistors per bit. Dynamic RAM is more complicated for interfacing and control, needing regular refresh cycles to prevent losing its contents, but uses only one transistor and one capacitor per bit, allowing it to reach much higher densities and much cheaper per-bit costs.[2][23][37]

Non-volatile memory

Non-volatile memory can retain the stored information even when not powered. Examples of non-volatile memory include read-only memory, flash memory, most types of magnetic computer storage devices (e.g. hard disk drives, floppy disks and magnetic tape), optical discs, and early computer storage methods such as magnetic drum, paper tape and punched cards.[37]

Non-volatile memory technologies under development include ferroelectric RAM, programmable metallization cell, Spin-transfer torque magnetic RAM, SONOS, resistive random-access memory, racetrack memory, Nano-RAM, 3D XPoint, and millipede memory.

Semi-volatile memory

A third category of memory is semi-volatile. The term is used to describe a memory that has some limited non-volatile duration after power is removed, but then data is ultimately lost. A typical goal when using a semi-volatile memory is to provide the high performance and durability associated with volatile memories while providing some benefits of non-volatile memory.

For example, some non-volatile memory types experience wear when written. A worn cell has increased volatility but otherwise continues to work. Data locations which are written frequently can thus be directed to use worn circuits. As long as the location is updated within some known retention time, the data stays valid. After a period of time without update, the value is copied to a less-worn circuit with longer retention. Writing first to the worn area allows a high write rate while avoiding wear on the not-worn circuits.[38]

As a second example, an STT-RAM can be made non-volatile by building large cells, but doing so raises the cost per bit and power requirements and reduces the write speed. Using small cells improves cost, power, and speed, but leads to semi-volatile behavior. In some applications, the increased volatility can be managed to provide many benefits of a non-volatile memory, for example by removing power but forcing a wake-up before data is lost; or by caching read-only data and discarding the cached data if the power-off time exceeds the non-volatile threshold.[39]

The term semi-volatile is also used to describe semi-volatile behavior constructed from other memory types, such as nvSRAM, which combines SRAM and a non-volatile memory on the same chip, where an external signal copies data from the volatile memory to the non-volatile memory, but if power is removed before the copy occurs, the data is lost. Another example is battery-backed RAM, which uses an external battery to power the memory device in case of external power loss. If power is off for an extended period of time, the battery may run out, resulting in data loss.[37]

Management

Proper management of memory is vital for a computer system to operate properly. Modern operating systems have complex systems to properly manage memory. Failure to do so can lead to bugs or slow performance.

Bugs

Improper management of memory is a common cause of bugs and security vulnerabilities, including the following types:

  • A memory leak occurs when a program requests memory from the operating system and never returns the memory when it is done with it. A program with this bug will gradually require more and more memory until the program fails as the operating system runs out.
  • A segmentation fault results when a program tries to access memory that it does not have permission to access. Generally, a program doing so will be terminated by the operating system.
  • A buffer overflow occurs when a program writes data to the end of its allocated space and then continues to write data beyond this to memory that has been allocated for other purposes. This may result in erratic program behavior, including memory access errors, incorrect results, a crash, or a breach of system security. They are thus the basis of many software vulnerabilities and can be maliciously exploited.

Virtual memory

Virtual memory is a system where physical memory is managed by the operating system typically with assistance from a memory management unit, which is part of many modern CPUs. It allows multiple types of memory to be used. For example, some data can be stored in RAM while other data is stored on a hard drive (e.g. in a swapfile), functioning as an extension of the cache hierarchy. This offers several advantages. Computer programmers no longer need to worry about where their data is physically stored or whether the user's computer will have enough memory. The operating system will place actively used data in RAM, which is much faster than hard disks. When the amount of RAM is not sufficient to run all the current programs, it can result in a situation where the computer spends more time moving data from RAM to disk and back than it does accomplishing tasks; this is known as thrashing.

Protected memory

Protected memory is a system where each program is given an area of memory to use and is prevented from going outside that range. If the operating system detects that a program has tried to alter memory that does not belong to it, the program is terminated (or otherwise restricted or redirected). This way, only the offending program crashes, and other programs are not affected by the misbehavior (whether accidental or intentional). Use of protected memory greatly enhances both the reliability and security of a computer system.

Without protected memory, it is possible that a bug in one program will alter the memory used by another program. This will cause that other program to run off of corrupted memory with unpredictable results. If the operating system's memory is corrupted, the entire computer system may crash and need to be rebooted. At times programs intentionally alter the memory used by other programs. This is done by viruses and malware to take over computers. It may also be used benignly by desirable programs which are intended to modify other programs, debuggers, for example, to insert breakpoints or hooks.

See also

Notes

  1. ^ Other volatile memory technologies that have attempted to compete or replace SRAM and DRAM include Z-RAM and A-RAM.

References

  1. ^ Read, Jennifer (5 November 2020). "DDR5 Era To Officially Begin In 2021, With DRAM Market Currently Transitioning Between Generations, Says TrendForce". EMSNow. Retrieved 2 November 2022.
  2. ^ a b Hemmendinger, David (February 15, 2016). "Computer memory". Encyclopedia Britannica. Retrieved 16 October 2019.
  3. ^ A.M. Turing and R.A. Brooker (1952). Programmer's Handbook for Manchester Electronic Computer Mark II Archived 2014-01-02 at the Wayback Machine. University of Manchester.
  4. ^ "Documentation for /proc/sys/vm/".
  5. ^ "The MOS Memory Market" (PDF). Integrated Circuit Engineering Corporation. Smithsonian Institution. 1997. Archived (PDF) from the original on 2003-07-25. Retrieved 16 October 2019.
  6. ^ "MOS Memory Market Trends" (PDF). Integrated Circuit Engineering Corporation. Smithsonian Institution. 1998. Archived (PDF) from the original on 2019-10-16. Retrieved 16 October 2019.
  7. ^ "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
  8. ^ "1953: Whirlwind computer debuts core memory". Computer History Museum. Retrieved 2 August 2019.
  9. ^ a b c d e f "1966: Semiconductor RAMs Serve High-speed Storage Needs". Computer History Museum. Retrieved 19 June 2019.
  10. ^ "1953: Transistors make fast memories | The Storage Engine | Computer History Museum". www.computerhistory.org. Retrieved 2019-11-14.
  11. ^ Orton, John W. (2009). Semiconductors and the Information Revolution: Magic Crystals that made IT Happen. Academic Press. p. 104. ISBN 978-0-08-096390-7.
  12. ^ Solid State Design - Vol. 6. Horizon House. 1965.
  13. ^ a b c "1970: MOS Dynamic RAM Competes with Magnetic Core Memory on Price". Computer History Museum. Retrieved 29 July 2019.
  14. ^ Wood, J.; Ball, R. (February 1965). "The use of insulated-gate field-effect transistors in digital storage systems". 1965 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. 1965 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. VIII. pp. 82–83. doi:10.1109/ISSCC.1965.1157606.
  15. ^ "1968: Silicon Gate Technology Developed for ICs". Computer History Museum. Retrieved 10 August 2019.
  16. ^ Critchlow, D. L. (2007). "Recollections on MOSFET Scaling". IEEE Solid-State Circuits Society Newsletter. 12 (1): 19–22. doi:10.1109/N-SSC.2007.4785536.
  17. ^ a b "DRAM". IBM100. IBM. 9 August 2017. Retrieved 20 September 2019.
  18. ^ "Spec Sheet for Toshiba "TOSCAL" BC-1411". Old Calculator Web Museum. Archived from the original on 3 July 2017. Retrieved 8 May 2018.
  19. ^ "Toshiba "Toscal" BC-1411 Desktop Calculator". Archived from the original on 2007-05-20.
  20. ^ "1966: Semiconductor RAMs Serve High-speed Storage Needs". Computer History Museum.
  21. ^ "Robert Dennard". Encyclopedia Britannica. Retrieved 8 July 2019.
  22. ^ "Intel: 35 Years of Innovation (1968–2003)" (PDF). Intel. 2003. Archived from the original (PDF) on 4 November 2021. Retrieved 26 June 2019.
  23. ^ a b The DRAM memory of Robert Dennard history-computer.com
  24. ^ Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588. The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 µm, 2 memory cell size, a die size just under 10 mm², and sold for around $21.
  25. ^ "KM48SL2000-7 Datasheet". Samsung. August 1992. Retrieved 19 June 2019.
  26. ^ "Electronic Design". Electronic Design. 41 (15–21). Hayden Publishing Company. 1993. The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.
  27. ^ Han-Way Huang (5 December 2008). Embedded System Design with C805. Cengage Learning. p. 22. ISBN 978-1-111-81079-5. Archived from the original on 27 April 2018.
  28. ^ Marie-Aude Aufaure; Esteban Zimányi (17 January 2013). Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures. Springer. p. 136. ISBN 978-3-642-36318-4. Archived from the original on 27 April 2018.
  29. ^ "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved 19 June 2019.
  30. ^ Tarui, Y.; Hayashi, Y.; Nagai, K. (1972). "Electrically reprogrammable nonvolatile semiconductor memory". IEEE Journal of Solid-State Circuits. 7 (5): 369–375. Bibcode:1972IJSSC...7..369T. doi:10.1109/JSSC.1972.1052895. ISSN 0018-9200.
  31. ^ Fulford, Benjamin (24 June 2002). "Unsung hero". Forbes. Archived from the original on 3 March 2008. Retrieved 18 March 2008.
  32. ^ US 4531203  Fujio Masuoka
  33. ^ "Toshiba: Inventor of Flash Memory". Toshiba. Retrieved 20 June 2019.
  34. ^ Masuoka, F.; Momodomi, M.; Iwata, Y.; Shirota, R. (1987). "1987 International Electron Devices Meeting". Electron Devices Meeting, 1987 International. IEDM 1987. IEEE. pp. 552–555. doi:10.1109/IEDM.1987.191485.
  35. ^ "1987: Toshiba Launches NAND Flash". eWeek. April 11, 2012. Retrieved 20 June 2019.
  36. ^ "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved 19 June 2019.
  37. ^ a b c d e Stanek, William R. (2009). Windows Server 2008 Inside Out. O'Reilly Media, Inc. p. 1520. ISBN 978-0-7356-3806-8. Archived from the original on 2013-01-27. Retrieved 2012-08-20. [...] Windows Server Enterprise supports clustering with up to eight-node clusters and very large memory (VLM) configurations of up to 32 GB on 32-bit systems and 2 TB on 64-bit systems.
  38. ^ Montierth, Briggs, Keithley. "Semi-volatile NAND flash memory". Retrieved 20 May 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)
  39. ^ Keppel, Naeimi, Nasrullah. "Method and apparatus for managing a spin-transfer torque memory". Google Patents. Retrieved 20 May 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)

Further reading

  • Miller, Stephen W. (1977), Memory and Storage Technology, Montvale.: AFIPS Press
  • Memory and Storage Technology, Alexandria, Virginia.: Time Life Books, 1988
Read more information:

Republik Lebanonالجمهوريّة اللبنانيّة Al-Jumhūrīyah al-Lubnānīyah (bahasa Arab) République libanaise (bahasa Prancis) Bendera Lambang Semboyan: كلنا للوطن للعلى للعلم Kullunā lil-waṭan, lil-ʻula, lil-ʻalam (Arab: Kita semua untuk negara, Untuk kemuliaan, Untuk bendera)Lagu kebangsaan:  النشيد الوطني اللبناني An-Nasyīd al-Waṭaniyy al-Lubnānī (Indonesia: Himne Nasional Libanon) Perlihatkan BumiPerlihatkan peta Bend…

Cinema ofBrazil List of Brazilian films Brazilian Animation Pre 1920 1920s 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 …

Untuk kegunaan lain, lihat Bronok (disambiguasi). Bronok Acaudina molpadioides TaksonomiKerajaanAnimaliaFilumEchinodermataKelasHolothuroideaOrdoMolpadidaFamiliCaudinidaeGenusAcaudinaSpesiesAcaudina molpadioides Tata namaSinonim taksonAphelodactyla delicata (en)Aphelodactyla molpadioides (en)Haplodactyla molpadioides (en)Haplodactyla australis (en) ProtonimHaplodactyla molpadioides lbs Bronok (Acaudina molpadioides) adalah hewan sejenis teripang yang hidup di kawasan pantai yang bergelombang. Ber…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此…

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Air GearAir Gear vol01.jpgSampul Manga volume 1, featuring Ikki Minamiエア・ギア(Ea Gia)GenreLaga,[1] Olahraga[2] MangaPengarang…

Divisi Utama Sepak Bola El SalvadorNegara El SalvadorKonfederasiCONCACAFDibentuk1969Jumlah tim12Tingkat pada piramida1Degradasi keSegunda DivisiónPiala ligaCopa El SalvadorPiala internasionalLiga Champions CONCACAFJuara bertahan ligaFASKlub tersuksesFAS (19 gelar)Televisi penyiarCanal 4Tigo SportsSitus webhttps://laprimera.com.sv/ 2022–23 Primera División de El Salvador Primera División dari Liga de Fútbol cuscatleco Profesional (Liga Sepak Bola Profesional), lebih diketahui sebagai La Lig…

Terminal MengwiTerminal Bus Tipe ALokasiJalan Mengwi-Mengwitani, Mengwitani, Mengwi, Badung, Bali 80351IndonesiaPemilikPemerintah Kabupaten BadungOperatorKementerian Perhubungan Republik IndonesiaLayananAngkutan AglomerasiAngkutan AntarkotaSejarahDibuka23 Oktober 2017Sunting kotak info • L • BBantuan penggunaan templat ini Terminal Mengwi merupakan terminal bus tipe A dan juga merupakan terminal induk terbesar di Provinsi Bali. Terminal Mengwi terletak di luar perbatasan kota Denpa…

12th and 14th governor of Washington Arthur Langlie12th and 14th Governor of WashingtonIn officeJanuary 12, 1949 – January 16, 1957LieutenantVictor Aloysius MeyersEmmett T. AndersonPreceded byMonrad WallgrenSucceeded byAlbert RoselliniIn officeJanuary 15, 1941 – January 10, 1945LieutenantVictor Aloysius MeyersPreceded byClarence D. MartinSucceeded byMonrad WallgrenChair of the National Governors AssociationIn officeAugust 9, 1955 – June 24, 1956Preceded byRobert …

العلاقات الدنماركية الموريشيوسية الدنمارك موريشيوس   الدنمارك   موريشيوس تعديل مصدري - تعديل   العلاقات الدنماركية الموريشيوسية هي العلاقات الثنائية التي تجمع بين الدنمارك وموريشيوس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية لل…

1921 film The Servant in the HouseAd for filmDirected byJack ConwayWritten byLanier BartlettBased onThe Servant in the House (play)by Charles Rann KennedyProduced byTriangle Film CorporationStarringJean HersholtCinematographyElgin LessleyDistributed byFilm Booking Offices of America (re-release)Release dates July 1920 (original) February 1921 (rerelease) Running time8–9 reelsCountryUnited StatesLanguageSilent (English intertitles) The Servant in the House is a lost[1] 1921 American sil…

Carde de lainage à main Le lainage est une opération qui fait partie du processus de finition des textiles, qui consiste à soulever les fibres des fils d’un tissu pour le rendre plus moelleux et souple. Ce procédé change le toucher en conférant un aspect poilu et velouté à la superface et cachant le maillage de la chaîne et de la trame. D'autres avantages sont l’augmentation de la quantité d’air retenue par les mailles et l'amélioration des propriétés d’isolation thermique d…

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Enrico Rivolta Nazionalità  Italia Calcio Ruolo Centrocampista Termine carriera 1939 Carriera Squadre di club1 1922-1928 Inter118 (33)1928-1931 Ambrosiana94 (16)1931-1933 Ambrosiana-Inter53 (5)1933-1936 Napoli85 (2)1936-1937 Milan0 (0)1937-1938 Como1 (0)1938-1939 Crema28+ …

Finnish musician Rantanen playing with Thunderstone in 2007Mirka Rantanen (born 1971 or 1972 (age 51–52))[1] is a Finnish musician. He was the drummer for power metal band Thunderstone when it formed in 2000.[2] Rantanen has also drummed for a number of other Finnish bands, including as a session member for the supergroup Northern Kings.[3] He currently plays drums in the band King Company. Rantanen started a heavy metal band for children called Hevisau…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Rumah Keluarga SouwRumah Keluarga SouwInformasi umumGaya arsitekturArsitektur MinnanAlamatJalan Perniagaan RayaKotaJakartaNegaraIndonesiaPemilikKeluarga Souw Rumah Keluarga Souw adalah markah tanah yang terletak di Jalan Perniagaan, Jakarta Barat.[1&#…

Medical conditionGeriatric traumaMedical personnel attend to geriatric trauma patient.SpecialtyEmergency medicine Geriatric trauma refers to a traumatic injury that occurs to an elderly person. People around the world are living longer than ever. In developed and underdeveloped countries, the pace of population aging is increasing. By 2050, the world's population aged 60 years and older is expected to total 2 billion, up from 900 million in 2015.[1] While this trend presents opportunitie…

Ini adalah nama Korea; marganya adalah Kam. Kam Woo-sungLahir1 Oktober 1970 (umur 53)Okcheon County, Provinsi Chungcheong Utara, Korea SelatanNama lainGam Woo-sung Gam Wu-seong Kam Woo-seong Karm Woo-sungPendidikanUniversitas Nasional Seoul - Oriental PaintingPekerjaanAktorTahun aktif1991–sekarangSuami/istriKang Min-ah (m. 2006)Nama KoreaHangul감우성 Hanja甘宇成 Alih AksaraGam U-seongMcCune–ReischauerKam Usŏng Kam Woo-sung (lahir 1 Oktober 1970) adalah aktor asal Korea …

Genus of carnivores Mungos Banded mongoose, Mungos mungo Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Suborder: Feliformia Family: Herpestidae Subfamily: Mungotinae Genus: MungosE. Geoffroy Saint-Hilaire & F. Cuvier, 1795 Type species Viverra mungoGmelin, 1788 Species Mungos mungo Mungos gambianus   range of M. mungo  range of M. gambianus  region of sympatry Mungos is a mongoose genus that was p…

Conic solid with a polygonal base In geometry, a pyramid (from Ancient Greek πυραμίς (puramís))[1][2] is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with a polygonal base. Many types of pyramids can be found by determining the shape of bases, or cutting off the apex. It can be generalized into higher dimension, known as hyperpyramid. All pyrami…

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского посел…

此條目之中立性有争议。其內容、語調可能帶有明顯的個人觀點或地方色彩。 (2011年6月)加上此模板的編輯者需在討論頁說明此文中立性有爭議的原因,以便讓各編輯者討論和改善。在編輯之前請務必察看讨论页。 格奥尔基·季米特洛夫保加利亚共产党中央委员会总书记任期1948年8月—1949年7月2日前任自己(第一书记)继任维尔科·契尔文科夫保加利亚共产党中央委员会第一书…

Kembali kehalaman sebelumnya