Share to: share facebook share twitter share wa share telegram print page

Continuum robot

A continuum robot is a type of robot that is characterised by infinite degrees of freedom and number of joints.[citation needed] These characteristics allow continuum manipulators to adjust and modify their shape at any point along their length, granting them the possibility to work in confined spaces and complex environments where standard rigid-link robots cannot operate.[1] In particular, we can define a continuum robot as an actuatable structure whose constitutive material forms curves with continuous tangent vectors.[2] This is a fundamental definition that allows to distinguish between continuum robots and snake-arm robots or hyper-redundant manipulators: the presence of rigid links and joints allows them to only approximately perform curves with continuous tangent vectors.

The design of continuum robots is bioinspired, as the intent is to resemble biological trunks, snakes and tentacles. Several concepts of continuum robots have been commercialised and can be found in many different domains of application, ranging from the medical field to undersea exploration.[citation needed]

Classification

Continuum robots can be categorised according to two main criteria: structure and actuation.[2]

Structure

The main characteristic of the design of continuum robots is the presence of a continuously curving core structure, named backbone, whose shape can be actuated. The backbone must also be compliant, meaning that the backbone yields smoothly to external loads.[3]

According to the design principles chosen for the continuum manipulator, we can distinguish between:

  • single-backbone: these continuum manipulators have one central elastic backbone through which actuation/transmission elements can run.
  • multi-backbone: the structure of these continuum robots has two or more elastic elements (either rods or tubes) parallel to each other and constrained with one another in some way.[4]
  • concentric-tube: the backbone is made of concentric tubes that are free to rotate and translate between each other, depending on the actuation happening at the base of the robot.[3]

Actuation

The actuation strategy of continuum manipulators can be distinguished between extrinsic or intrinsic actuation, depending on where the actuation happens:

  • extrinsic actuation: the actuation happens outside the main structure of the robot and the forces are transmitted via mechanical transmission; among these techniques, there are cable/tendon driven actuators and multi-backbone strategies.
  • intrinsic actuation: the actuation mechanism operates within the structure of the robot; these strategies include pneumatic[5] or hydraulic chambers[6] and the shape memory effect.[7]

Advantages

The particular design of continuum robots offers several advantages with respect to rigid-link robots. First of all, as already said, continuum robots can more easily operate in environments that require a high level of dexterity, adaptability and flexibility. Moreover, the simplicity of their structure makes continuum robots more prone to miniaturisation. The rise of continuum robots has also paved the way for the development of soft continuum manipulators. These continuum manipulators are made of highly compliant materials that are flexible and can adapt and deform according to the surrounding environment. The "softness" of their material grants higher safety in human-robot interactions.[8]

Disadvantages

The particular design of continuum robots also introduces many challenges. To properly and safely use continuum robots, it is crucial to have an accurate force and shape sensing system. Traditionally, this is done using cameras that are not suitable for some of the applications of continuum robots (e.g. minimally invasive surgery), or using electromagnetic sensors that are however disturbed by the presence of magnetic objects in the environment. To solve this issue, in the last years fiber-Bragg-grating sensors have been proposed as a possible alternative and have shown promising results.[9][10] It is also necessary to notice that while the mechanical properties of rigid-link robots are fully understood, the comprehension of the behaviour and properties of continuum robots is still subject of study and debate.[1] This poses new challenges in developing accurate models and control algorithms for this kind of robots.

Modelling

Creating an accurate model that can predict the shape of a continuum robot allows to properly control the robot's shape.[11] There are three main approaches to model continuum robots:

  • Cosserat rod theory: this approach is an exact solution to the static of a continuum robot, as it is not subject to any assumption. It solves a set of equilibrium equations between position, orientation, internal force and torque of the robot. This method requires to be solved numerically and it is therefore computationally expensive, due to its high complexity.[11][12]
  • Constant curvature: this technique assumes the backbone to be made of a series of mutually tangent sections that can be approximated as arcs with constant curvature. This approach is also known as piecewise constant-curvature. This assumption can be applied to the entire segment of the backbone or to its subsegments.[13] This model has shown promising results, however it must be taken into account that the segment/subsegments of the backbone may not comply to the constant curvature assumption and therefore the model's behaviour may not entirely reflect the behaviour of the robot.
  • Rigid-link model: this approach is based on the assumption that the continuum robot can be divided in small segments with rigid links. This is a strong assumption, since if the number of segments is too low, the model hardly behaves like the continuum robot, while increasing the number of segments means increasing the number of variables, and thus complexity. Despite this limitation, rigid-link modelling allows the use of the standard control techniques that are well known for rigid-link robots. It has been proven that this model can be coupled with shape and force sensing to mitigate its inaccuracy and can lead to promising results.[14]

Sensing

To develop accurate control algorithms, it is necessary to complement the presented modelling techniques with real time shape sensing. The following options are currently available:

  • Electromagnetic (EM) sensing: shape is reconstructed thanks to the mutual induction between a magnetic field generator and a magnetic field sensor.[15] The most common external EM tracking system is the commercially available NDI Aurora: small sensors can be placed on the robot and their position is tracked in an external generated magnetic field. The validity of this method has been extensively assessed,[16][17] however its performance is hindered by the limited workspace, whose dimension depends on the magnetic field. Another alternative is to embed the sensors internally in the continuum robot, combining magnetic sensors with Hall effect sensors:[18][19] the magnetic field is measured at the level of the Hall effect sensors in order to estimate the deflection of the robot. However, it has been noticed that the higher the bending of the manipulator, the higher is the estimation error, due to crosstalk between sensors and magnets.
  • Optical sensing: fiber Bragg grating sensors incorporated in an optical fiber can be embedded into the backbone of the continuum robot to estimate its shape; these sensors can only reflect a small range of the input light spectrum depending on their strain; therefore, by measuring the strain on each sensor it is possible to obtain the shape of the robot. This type of sensor is however expensive and is more prone to breaking in case of excessive strain, and this can happen in robots that can perform high deflections.

Control strategies

The control strategies can be distinguished in static and dynamic; the first one is based on the steady-state assumption, while the latter also considers the dynamic behaviour of the continuum robot. We can also differentiate between model-based controllers, that depend on a model of the robot, and model-free, that learn the robot's behaviour from data.[20]

  • Model-based static controllers: they rely on one of the modelling approaches presented above; once the model is defined, the kinematics must be inverted to obtain the desired actuator or configuration space variables. There are several ways to do this, like differential inverse kinematics, direct inversion or optimization.
  • Model-free static controllers: these approaches learn directly, via machine learning techniques (e.g. regression methods and neural networks), the inverse kinematic or the direct kinematic representation of the continuum robot from collected data, and they are also known as data-driven methods. Even though these controllers present the advantage of not having to establish an accurate model of the continuum robot, they perform worse than their model-based counterpart.
  • Model-based dynamic controllers: they need the formulation of the kinematic model and an associated dynamic formulation. As of 2021, they are in the early stage, as they require high computational power and high-dimensional sensory feedback. With improvements in computational power and sensing capabilities they could be crucial in industrial applications of continuum robots, where time and cost are also relevant along with accuracy.
  • Model-free dynamic controllers: they are still a relatively unexplored approach. Some works that propose machine learning techniques to learn the dynamic behaviour of continuum robots have been presented, but their performance is limited by high training time and instability of the machine learning model.

Hybrid approaches, that combine model-free and model-based controllers, can also present a valid alternative.

Applications

Continuum robots have been applied in many different fields.

Medical

Continuum robots have been widely applied in the medical field, in particular for minimally invasive surgery.[1] For example, Ion by Intuitive is a robotic-assisted endoluminal platform for minimally invasive peripheral lung biopsy, that allows to reach nodules located in peripheral areas of the lungs that cannot be reached by standard instrumentations; this allows to perform early-stage diagnoses of cancer.

Hazardous places

Continuum robots offer the possibility of completing tasks in hazardous and hostile environments. For example, a quadruped robot with continuum limbs has been developed: it can walk, crawl, trot and propel to whole arm grasping to negotiate difficult obstacles.[21]

Space

NASA has developed a continuum manipulator, named Tendril, that can extend into crevasses and under thermal blankets to access areas that would be otherwise inaccessible with conventional means.[22]

Subsea

The AMADEUS project developed a dextrous underwater robot for grasping and manipulation tasks, while the FLAPS project created propulsion systems that replicate the mechanisms of fish swimming.[23]

See also

References

  1. ^ a b c da Veiga, Tomas; Chandler, James H; Lloyd, Peter; Pittiglio, Giovanni; Wilkinson, Nathan J; Hoshiar, Ali K; Harris, Russell A; Valdastri, Pietro (2020-08-03). "Challenges of continuum robots in clinical context: a review". Progress in Biomedical Engineering. 2 (3): 032003. doi:10.1088/2516-1091/ab9f41. ISSN 2516-1091. S2CID 225400772.
  2. ^ a b Burgner-Kahrs, Jessica; Rucker, D. Caleb; Choset, Howie (December 2015). "Continuum Robots for Medical Applications: A Survey". IEEE Transactions on Robotics. 31 (6): 1261–1280. doi:10.1109/TRO.2015.2489500. ISSN 1552-3098. S2CID 9660483.
  3. ^ a b Walker, Ian D. (2013-07-16). "Continuous Backbone "Continuum" Robot Manipulators". ISRN Robotics. 2013: 1–19. doi:10.5402/2013/726506.
  4. ^ Bajo, Andrea; Simaan, Nabil (April 2016). "Hybrid motion/force control of multi-backbone continuum robots". The International Journal of Robotics Research. 35 (4): 422–434. doi:10.1177/0278364915584806. ISSN 0278-3649. S2CID 206500774.
  5. ^ Chen, Gang; Pham, Minh Tu; Redarce, Tanneguy (2008), Lee, Sukhan; Suh, Il Hong; Kim, Mun Sang (eds.), "A Guidance Control Strategy for Semi-autonomous Colonoscopy Using a Continuum Robot", Recent Progress in Robotics: Viable Robotic Service to Human: An Edition of the Selected Papers from the 13th International Conference on Advanced Robotics, Lecture Notes in Control and Information Sciences, vol. 370, Berlin, Heidelberg: Springer, pp. 63–78, doi:10.1007/978-3-540-76729-9_6, ISBN 978-3-540-76729-9
  6. ^ Ikuta, K.; Ichikawa, H.; Suzuki, K.; Yajima, D. (2006). "Multi-degree of freedom hydraulic pressure driven safety active catheter". Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Orlando, FL, USA: IEEE. pp. 4161–4166. doi:10.1109/ROBOT.2006.1642342. ISBN 978-0-7803-9505-3. S2CID 1646994.
  7. ^ Jayender, J.; Patel, R.V.; Nikumb, S. (2009-09-01). "Robot-assisted Active Catheter Insertion: Algorithms and Experiments". The International Journal of Robotics Research. 28 (9): 1101–1117. doi:10.1177/0278364909103785. ISSN 0278-3649. S2CID 206500027.
  8. ^ Rus, Daniela; Tolley, Michael T. (May 2015). "Design, fabrication and control of soft robots". Nature. 521 (7553): 467–475. Bibcode:2015Natur.521..467R. doi:10.1038/nature14543. hdl:1721.1/100772. ISSN 1476-4687. PMID 26017446. S2CID 217952627.
  9. ^ Roesthuis, Roy J.; Janssen, Sander; Misra, Sarthak (November 2013). "On using an array of fiber Bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments". 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (PDF). Tokyo: IEEE. pp. 2545–2551. doi:10.1109/IROS.2013.6696715. ISBN 978-1-4673-6358-7. S2CID 13551100.
  10. ^ Ryu, Seok Chang; Dupont, Pierre E. (May 2014). "FBG-based shape sensing tubes for continuum robots". 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE. pp. 3531–3537. doi:10.1109/ICRA.2014.6907368. ISBN 978-1-4799-3685-4. S2CID 15064329.
  11. ^ a b Jones, Bryan A.; Gray, Ricky L.; Turlapati, Krishna (October 2009). "Three dimensional statics for continuum robotics". 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA: IEEE. pp. 2659–2664. doi:10.1109/IROS.2009.5354199. ISBN 978-1-4244-3803-7. S2CID 17031584.
  12. ^ Ghafoori, Morteza; Keymasi Khalaji, Ali (2020-12-01). "Modeling and experimental analysis of a multi-rod parallel continuum robot using the Cosserat theory". Robotics and Autonomous Systems. 134: 103650. doi:10.1016/j.robot.2020.103650. ISSN 0921-8890. S2CID 225025768.
  13. ^ Rao, Priyanka; Peyron, Quentin; Lilge, Sven; Burgner-Kahrs, Jessica (2021). "How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance". Frontiers in Robotics and AI. 7: 630245. doi:10.3389/frobt.2020.630245. ISSN 2296-9144. PMC 7885639. PMID 33604355.
  14. ^ Roesthuis, Roy J.; Misra, Sarthak (April 2016). "Steering of Multisegment Continuum Manipulators Using Rigid-Link Modeling and FBG-Based Shape Sensing". IEEE Transactions on Robotics. 32 (2): 372–382. doi:10.1109/TRO.2016.2527047. ISSN 1552-3098. S2CID 17902850.
  15. ^ Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang (August 2017). "Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey". IEEE Transactions on Biomedical Engineering. 64 (8): 1665–1678. doi:10.1109/TBME.2016.2622361. ISSN 0018-9294. PMID 27810796. S2CID 26514168.
  16. ^ Dore, Alessio; Smoljkic, Gabrijel; Poorten, Emmanuel Vander; Sette, Mauro; Sloten, Jos Vander; Yang, Guang-Zhong (October 2012). "Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation". 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE. pp. 3806–3811. doi:10.1109/IROS.2012.6386139. ISBN 978-1-4673-1736-8. S2CID 17183408.
  17. ^ Xu, Ran; Asadian, Ali; Naidu, Anish S.; Patel, Rajni V. (May 2013). "Position control of concentric-tube continuum robots using a modified Jacobian-based approach". 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE. pp. 5813–5818. doi:10.1109/ICRA.2013.6631413. ISBN 978-1-4673-5643-5. S2CID 580594.
  18. ^ Guo, Hao; Ju, Feng; Cao, Yanfei; Qi, Fei; Bai, Dongming; Wang, Yaoyao; Chen, Bai (2019-01-01). "Continuum robot shape estimation using permanent magnets and magnetic sensors". Sensors and Actuators A: Physical. 285: 519–530. Bibcode:2019SeAcA.285..519G. doi:10.1016/j.sna.2018.11.030. ISSN 0924-4247. S2CID 117531270.
  19. ^ Ozel, Selim; Skorina, Erik H.; Luo, Ming; Tao, Weijia; Chen, Fuchen; Yixiao Pan; Onal, Cagdas D. (May 2016). "A composite soft bending actuation module with integrated curvature sensing". 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE. pp. 4963–4968. doi:10.1109/ICRA.2016.7487703. ISBN 978-1-4673-8026-3. S2CID 6366153.
  20. ^ George Thuruthel, Thomas; Ansari, Yasmin; Falotico, Egidio; Laschi, Cecilia (April 2018). "Control Strategies for Soft Robotic Manipulators: A Survey". Soft Robotics. 5 (2): 149–163. Bibcode:2018SoftR...5..149G. doi:10.1089/soro.2017.0007. hdl:11382/521074. ISSN 2169-5172. PMID 29297756.
  21. ^ Godage, Isuru S.; Nanayakkara, Thrishantha; Caldwell, Darwin G. (October 2012). "Locomotion with continuum limbs". 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE. pp. 293–298. doi:10.1109/IROS.2012.6385810. ISBN 978-1-4673-1736-8. S2CID 11689025.
  22. ^ Buckingham, Rob; Graham, Andrew (2003-09-08). "Snake-Arm Robots – A New Tool for the Aerospace Industry". SAE Technical Paper Series. 1. Warrendale, PA: SAE International. doi:10.4271/2003-01-2952.
  23. ^ Davies, J.B.C.; Lane, D.M.; Robinson, G.C.; O'Brien, D.J.; Pickett, M.; Sfakiotakis, M.; Deacon, B. (1998). "Subsea applications of continuum robots". Proceedings of 1998 International Symposium on Underwater Technology. Tokyo, Japan: IEEE. pp. 363–369. doi:10.1109/UT.1998.670127. ISBN 978-0-7803-4273-6. S2CID 111200462.

Read other articles:

Statistical task that deconstructs a time series into several components This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Decomposition of time series – news · newspapers · books · scholar · JSTOR (October 2015) (Learn how and when to remove this template message) The decomposition of time series is a statistica…

Tabung fluoresen lampu hitam. Cahaya ungu dari lampu hitam bukanlah cahaya UV itu sendiri, tetapi cahaya tampak yang lolos dari penyaringan oleh bahan filter dalam selubung kaca. Lampu hitam, juga disebut lampu UV-A, lampu Wood, atau lampu ultraviolet, adalah lampu yang memancarkan sinar ultraviolet gelombang panjang (UV-A) dan sangat sedikit cahaya tampak.[1][2][3][4] Salah satu jenis lampu memiliki bahan filter violet, baik pada bohlam atau dalam filter kaca ter…

Universitas Korea고려대학교Moto자유·정의·진리 (Libertas, Justitia, Veritas)JenisSwastaDidirikan1905PresidenLee Gi-sooStaf akademik3.570 (2008)Jumlah mahasiswa28.568 (2008)Sarjana19.454 (2008)Magister9.114 (2008)Lokasi Seoul,  Korea SelatanKampusUrbanWarnaCrimson  Nama julukanGodae (고대), K.UMaskotHarimauSitus webwww.korea.ac.kr (bahasa Korea), www.korea.edu (bahasa Inggris) Universitas KoreaHangul고려대학교 Hanja高麗大學校 Alih AksaraGoryeo DaehakgyoMcCun…

Eyong Enoh Informasi pribadiNama lengkap Eyong Tarkang Enoh[1]Tanggal lahir 23 Maret 1986 (umur 37)Tempat lahir Kumba, KamerunTinggi 178 m (584 ft 0 in)Posisi bermain GelandangInformasi klubKlub saat ini Antalyaspor (pinjaman dari Ajax)Nomor 33Karier junior2002–2003 Tiko Youngstars2003–2004 Mount CameroonKarier senior*Tahun Tim Tampil (Gol)2003–2004 Mount Cameroon FC 18 (4)2004–2005 Mağusa Türk Gücü 36 (1)2005–2006 Türk Ocağı Limasol 0 (0)2006–2008 …

Alta kommuneMunisipalitas Lambang kebesaranFinnmark di NorwayLetak Alta di FinnmarkNegara NorwegiaCountyFinnmarkAdministrative centreAltaPemerintahan • Mayor (2003)Geir Ove Bakken (Ap)Luas • Total3.849 km2 (1,486 sq mi) • Luas daratan3.651 km2 (1,410 sq mi)Peringkat7 in NorwayPopulasi (2004) • Total17.440 • Peringkat56 in Norway • Kepadatan5/km2 (10/sq mi) • Chang…

Pembersih gas buang di pembangkit listrik tenaga batu batu bara G. G. Allen di Amerika Serikat. Desulfurisasi gas buang adalah prosedur pembersihan gas untuk memisahkan sulfur dioksida (SO2) dari emisi gas buang, khususnya dari pabrik, pembangkit listrik, tempat pembakaran sampah dan mesin besar. Sulfur dioksida sendiri dihasilkan dari pembakaran bahan bakar fosil yang mengandung sulfur. Reaksi kimia 2 S O 2 + 2 C a ( O H ) 2 ⟶ 2 C a S O 3 + 2 H 2 O 2 C a S O 3 + O 2 + 4 H 2 O ⟶ 2 …

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此…

2017 studio album by Tori AmosNative InvaderStudio album by Tori AmosReleasedSeptember 8, 2017 (2017-09-08)Recorded2016–2017StudioMartian Engineering Studios, Cornwall, UKLength61:57LabelDeccaProducerTori Amos[1]Tori Amos chronology Unrepentant Geraldines(2014) Native Invader(2017) Christmastide(2020) Singles from Native Invader Cloud RidersReleased: July 28, 2017[2] Up the CreekReleased: August 11, 2017 Reindeer KingReleased: August 25, 2017 Professional…

Simbol Nasional Thailand adalah segala bentuk lambang atau simbol yang mencerminkan kekhasan dari negara Thailand yang mencerminkan aspek sejarah, dan budaya masyarakat setempat. Bendera Artikel utama: Bendera Thailand Bendera Thailand dalam Thai: Thong Trairongcode: th is deprecated (Thai: ธงไตรรงค์), yang bermakna, bendera tiga warna. Bendera ini menunjukkan lima jalur yang mendatar dengan warna merah, putih, biru, putih dan merah, dengan ukuran jalur biru yang ada di tengah …

This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (December 2017) 60th Fighter Squadron An F-35A Lightning II of the 33rd Fighter Wing maneuvers into position to refuel with a KC-135 StratotankerActive1941–1945; 1946–1971; 1971–2009; 2021-presentCountry United StatesBranch United States Air ForceRoleFighterSizesquadronPart ofAir Com…

Hayko Hayko en 2007.Informations générales Nom de naissance Hayk Hakobyan Naissance 25 août 1973Erevan (République socialiste soviétique d'Arménie, URSS) Décès 29 septembre 2021 (à 48 ans)Erevan (Arménie) Activité principale Chanteur, musicien, producteur Genre musical Pop, romance Années actives 1996-2021 modifier Hayko (Հայկո), nom de scène de Hayk Hakobyan (en arménien Հայկ Հակոբյան), est un chanteur arménien né le 25 août 1973 à Erevan (République soc…

La GraciosaLa Graciosa dari Mirador Del RioGeografiLokasiSamudra AtlantikKoordinat29°15′00″N 13°30′29″W / 29.250°N 13.508°W / 29.250; -13.508Koordinat: 29°15′00″N 13°30′29″W / 29.250°N 13.508°W / 29.250; -13.508KepulauanKepulauan Chinjo, Kepulauan CanaryLuas29.05 km2[1]Garis pantai30.395 km[2]Titik tertinggiAgujas Grandes (266 m)PemerintahanNegara SpanyolKota terbesarCaleta de Se…

Ethno-linguistic and religious population from India and Bangladesh This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2016) (Learn how and when to remove this template message) Bengali Hindusবাঙ্গালী হিন্দুDurga Puja, the most notable Hindu festival for Bengali Hindus.Total populationc. 80 millionRegions with significant pop…

19th-century Afrikaner cultural and nationalist movement This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Afrikaner Calvinism – news · newspapers · books · scholar · JSTOR (September 2016) (Learn how and when to remove this message) Part of a series onReformed ChristianityReformation Wall in Geneva, featuring pr…

Disambiguazione – Se stai cercando altri significati, vedi Speziale (disambigua). Questa voce sugli argomenti storia medievale e professioni è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Lo speziale nel XV secolo Lo speziale nel medioevo era colui che si occupava della preparazione delle medicine, solitamente aveva una bottega, definita spezieria, all'interno della quale effettuava anche attività di v…

Lok Sabha Constituency in Madhya Pradesh, India IndoreLok Sabha constituencyConstituency detailsCountryIndiaRegionCentral IndiaStateMadhya PradeshAssembly constituenciesDepalpur Indore-1 Indore-2 Indore-3 Indore-4 Indore-5 Rau SanwerEstablished1952ReservationNoneMember of Parliament17th Lok SabhaIncumbent Shankar Lalwani PartyBharatiya Janata PartyElected year2019 Indore Lok Sabha constituency is one of the 29 Lok Sabha constituencies in Madhya Pradesh state in central India. This constituency c…

Monte San MartinoIl monte sullo sfondo di LeccoStato Italia Regione Lombardia Provincia Lecco Altezza1 090 m s.l.m. e 1 445 m s.l.m. Prominenza26 ca. m CatenaAlpi Coordinate45°52′28.43″N 9°23′14.27″E / 45.874564°N 9.387298°E45.874564; 9.387298Coordinate: 45°52′28.43″N 9°23′14.27″E / 45.874564°N 9.387298°E45.874564; 9.387298 Mappa di localizzazioneMonte San Martino Dati SOIUSAGrande ParteAlpi Orientali…

Potenti VendicatorigruppoPotenti Vendicatori, disegnati da Frank Cho UniversoUniverso Marvel Nome orig.Mighty Avengers Lingua orig.Inglese AutoriBrian Michael Bendis Frank Cho EditoreMarvel Comics 1ª app.2007 1ª app. inMighty Avengers n. 1 Editore it.Panini Comics - Marvel Italia 1ª app. it.aprile 2008 Caratteristiche immaginarieFormazione Wasp II Ercole Scarlet Visione Sentry U.S. Agent Jocasta Stature Quicksilver Amadeus Cho Donna Ragno Capo/leaderMs. Marvel (prima), W…

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: There's Always Woodstock – news · newspapers · books · scholar · JSTOR (July 2014) (Learn how and when to remove this message) 2014 American filmThere's Always WoodstockDirected byRita MersonWritten byRita MersonProduced byPeter SchaferStarring Allison Miller Jason Ritter Brittany …

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. MontasioNegara asalItaliaWilayahBelluno, Treviso, Padua, VeniceSumber susuSapiDipasteurisasiYaTeksturKerasKadar lemak40%Waktu pematangan2-12 bulan[1] Montasio adalah keju yang berasal dari Italia bertekstur keras dan menggunakan susu sapi yang sud…

Kembali kehalaman sebelumnya