Share to: share facebook share twitter share wa share telegram print page

 

December 1944 lunar eclipse

December 1944 lunar eclipse
Penumbral eclipse
The Moon's hourly motion shown right to left
DateDecember 29, 1944
Gamma−1.0115
Magnitude−0.0176
Saros cycle114 (55 of 71)
Penumbral266 minutes, 39 seconds
Contacts (UTC)
P112:35:46
Greatest14:49:08
P417:02:25

A penumbral lunar eclipse occurred at the Moon’s ascending node of orbit on Friday, December 29, 1944,[1] with an umbral magnitude of −0.0176. It was a relatively rare total penumbral lunar eclipse, with the Moon passing entirely within the penumbral shadow without entering the darker umbral shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 6 days after perigee (on December 23, 1944, at 12:40 UTC), the Moon's apparent diameter was larger.[2]

This eclipse was the last of four penumbral lunar eclipses in 1944, with the others occurring on February 9, July 6, and August 4.

Saturn was conjunct with the Moon during this eclipse.

Visibility

The eclipse was completely visible over much of Asia, Australia, and northwestern North America, seen rising over Europe, east Africa, and the Middle East and setting over much of North America and the eastern Pacific Ocean.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

December 29, 1944 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 1.02198
Umbral Magnitude −0.01757
Gamma −1.01151
Sun Right Ascension 18h33m56.1s
Sun Declination -23°12'58.6"
Sun Semi-Diameter 16'15.9"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 06h34m05.9s
Moon Declination +22°14'56.3"
Moon Semi-Diameter 15'38.8"
Moon Equatorial Horizontal Parallax 0°57'25.5"
ΔT 26.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1944–January 1945
December 29
Ascending node (full moon)
January 14
Descending node (new moon)
Penumbral lunar eclipse
Lunar Saros 114
Annular solar eclipse
Solar Saros 140

Eclipses in 1944

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 114

Inex

Triad

Lunar eclipses of 1944–1947

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on February 9, 1944 and August 4, 1944 occur in the previous lunar year eclipse set.

Lunar eclipse series sets from 1944 to 1947
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
109 1944 Jul 06
Penumbral
1.2597 114 1944 Dec 29
Penumbral
−1.0115
119 1945 Jun 25
Partial
0.5370 124 1945 Dec 19
Total
−0.2845
129 1946 Jun 14
Total
−0.2324 134 1946 Dec 08
Total
0.3864
139 1947 Jun 03
Partial
−0.9850 144 1947 Nov 28
Penumbral
1.0838

Saros 114

This eclipse is a part of Saros series 114, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on May 13, 971 AD. It contains partial eclipses from August 7, 1115 through February 18, 1440; total eclipses from February 28, 1458 through July 17, 1674; and a second set of partial eclipses from July 28, 1692 through November 26, 1890. The series ends at member 71 as a penumbral eclipse on June 22, 2233.

The longest duration of totality was produced by member 35 at 106 minutes, 5 seconds on May 24, 1584. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Greatest First
The greatest eclipse of the series occurred on 1584 May 24, lasting 106 minutes, 5 seconds.[7] Penumbral Partial Total Central
971 May 13
1115 Aug 07
1458 Feb 28
1530 Apr 12
Last
Central Total Partial Penumbral
1638 Jun 26
1674 Jul 17
1890 Nov 26
2233 Jun 22

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1803 Feb 06
(Saros 101)
1814 Jan 06
(Saros 102)
1824 Dec 06
(Saros 103)
1846 Oct 04
(Saros 105)
1857 Sep 04
(Saros 106)
1868 Aug 03
(Saros 107)
1879 Jul 03
(Saros 108)
1890 Jun 03
(Saros 109)
1901 May 03
(Saros 110)
1912 Apr 01
(Saros 111)
1923 Mar 03
(Saros 112)
1934 Jan 30
(Saros 113)
1944 Dec 29
(Saros 114)
1955 Nov 29
(Saros 115)
1966 Oct 29
(Saros 116)
1977 Sep 27
(Saros 117)
1988 Aug 27
(Saros 118)
1999 Jul 28
(Saros 119)
2010 Jun 26
(Saros 120)
2021 May 26
(Saros 121)
2032 Apr 25
(Saros 122)
2043 Mar 25
(Saros 123)
2054 Feb 22
(Saros 124)
2065 Jan 22
(Saros 125)
2075 Dec 22
(Saros 126)
2086 Nov 20
(Saros 127)
2097 Oct 21
(Saros 128)
2108 Sep 20
(Saros 129)
2119 Aug 20
(Saros 130)
2130 Jul 21
(Saros 131)
2141 Jun 19
(Saros 132)
2152 May 18
(Saros 133)
2163 Apr 19
(Saros 134)
2174 Mar 18
(Saros 135)
2185 Feb 14
(Saros 136)
2196 Jan 15
(Saros 137)

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 121.

December 25, 1935 January 5, 1954

See also

Notes

  1. ^ "December 29–30, 1944 Penumbral Lunar Eclipse". timeanddate. Retrieved 19 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 19 December 2024.
  3. ^ "Penumbral Lunar Eclipse of 1944 Dec 29" (PDF). NASA. Retrieved 19 December 2024.
  4. ^ "Penumbral Lunar Eclipse of 1944 Dec 29". EclipseWise.com. Retrieved 19 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 114". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 114
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


Information related to December 1944 lunar eclipse

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya