Share to: share facebook share twitter share wa share telegram print page

Derived functor

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

Motivation

It was noted in various quite different settings that a short exact sequence often gives rise to a "long exact sequence". The concept of derived functors explains and clarifies many of these observations.

Suppose we are given a covariant left exact functor F : AB between two abelian categories A and B. If 0 → ABC → 0 is a short exact sequence in A, then applying F yields the exact sequence 0 → F(A) → F(B) → F(C) and one could ask how to continue this sequence to the right to form a long exact sequence. Strictly speaking, this question is ill-posed, since there are always numerous different ways to continue a given exact sequence to the right. But it turns out that (if A is "nice" enough) there is one canonical way of doing so, given by the right derived functors of F. For every i≥1, there is a functor RiF: AB, and the above sequence continues like so: 0 → F(A) → F(B) → F(C) → R1F(A) → R1F(B) → R1F(C) → R2F(A) → R2F(B) → ... . From this we see that F is an exact functor if and only if R1F = 0; so in a sense the right derived functors of F measure "how far" F is from being exact.

If the object A in the above short exact sequence is injective, then the sequence splits. Applying any additive functor to a split sequence results in a split sequence, so in particular R1F(A) = 0. Right derived functors (for i>0) are zero on injectives: this is the motivation for the construction given below.

Construction and first properties

The crucial assumption we need to make about our abelian category A is that it has enough injectives, meaning that for every object A in A there exists a monomorphism AI where I is an injective object in A.

The right derived functors of the covariant left-exact functor F : AB are then defined as follows. Start with an object X of A. Because there are enough injectives, we can construct a long exact sequence of the form

where the I i are all injective (this is known as an injective resolution of X). Applying the functor F to this sequence, and chopping off the first term, we obtain the chain complex

Note: this is in general not an exact sequence anymore. But we can compute its cohomology at the i-th spot (the kernel of the map from F(Ii) modulo the image of the map to F(Ii)); we call the result RiF(X). Of course, various things have to be checked: the result does not depend on the given injective resolution of X, and any morphism XY naturally yields a morphism RiF(X) → RiF(Y), so that we indeed obtain a functor. Note that left exactness means that 0 → F(X) → F(I0) → F(I1) is exact, so R0F(X) = F(X), so we only get something interesting for i>0.

(Technically, to produce well-defined derivatives of F, we would have to fix an injective resolution for every object of A. This choice of injective resolutions then yields functors RiF. Different choices of resolutions yield naturally isomorphic functors, so in the end the choice doesn't really matter.)

The above-mentioned property of turning short exact sequences into long exact sequences is a consequence of the snake lemma. This tells us that the collection of derived functors is a δ-functor.

If X is itself injective, then we can choose the injective resolution 0 → XX → 0, and we obtain that RiF(X) = 0 for all i ≥ 1. In practice, this fact, together with the long exact sequence property, is often used to compute the values of right derived functors.

An equivalent way to compute RiF(X) is the following: take an injective resolution of X as above, and let Ki be the image of the map Ii-1Ii (for i=0, define Ii-1=0), which is the same as the kernel of IiIi+1. Let φi : Ii-1Ki be the corresponding surjective map. Then RiF(X) is the cokernel of Fi).

Variations

If one starts with a covariant right-exact functor G, and the category A has enough projectives (i.e. for every object A of A there exists an epimorphism PA where P is a projective object), then one can define analogously the left-derived functors LiG. For an object X of A we first construct a projective resolution of the form

where the Pi are projective. We apply G to this sequence, chop off the last term, and compute homology to get LiG(X). As before, L0G(X) = G(X).

In this case, the long exact sequence will grow "to the left" rather than to the right:

is turned into

.

Left derived functors are zero on all projective objects.

One may also start with a contravariant left-exact functor F; the resulting right-derived functors are then also contravariant. The short exact sequence

is turned into the long exact sequence

These left derived functors are zero on projectives and are therefore computed via projective resolutions.

Examples

  • If is an abelian category, then its category of morphisms is also abelian. The functor which maps each morphism to its kernel is left exact. Its right derived functors are
Dually the functor is right exact and its left derived functors are
This is a manifestation of the snake lemma.

Homology and cohomology

If is a topological space, then the category of all sheaves of abelian groups on is an abelian category with enough injectives. The functor which assigns to each such sheaf the group of global sections is left exact, and the right derived functors are the sheaf cohomology functors, usually written as . Slightly more generally: if is a ringed space, then the category of all sheaves of -modules is an abelian category with enough injectives, and we can again construct sheaf cohomology as the right derived functors of the global section functor.

There are various notions of cohomology which are a special case of this:

If is a ring, then the category of all left -modules is an abelian category with enough injectives. If is a fixed left -module, then the functor is left exact, and its right derived functors are the Ext functors . Alternatively can also be obtained as the left derived functor of the right exact functor .

Various notions of cohomology are special cases of Ext functors and therefore also derived functors.

  • Group cohomology is the right derived functor of the invariants functor which is the same as (where is the trivial -module) and therefore .
  • Lie algebra cohomology of a Lie algebra over some commutative ring is the right derived functor of the invariants functor which is the same as (where is again the trivial -module and is the universal enveloping algebra of ). Therefore .
  • Hochschild cohomology of some -algebra is the right derived functor of invariants mapping a bimodule to its center, also called its set of invariants which is the same as (where is the enveloping algebra of and is considered an -bimodule via the usual left and right multiplication). Therefore :

The category of left -modules also has enough projectives. If is a fixed right -module, then the tensor product with gives a right exact covariant functor ; The category of modules has enough projectives so that left derived functors always exists. The left derived functors of the tensor functor are the Tor functors . Equivalently can be defined symmetrically as the left derived functors of . In fact one can combine both definitions and define as the left derived of .

This includes several notions of homology as special cases. This often mirrors the situation with Ext functors and cohomology.

  • Group homology is the left derived functor of taking coinvariants which is the same as .
  • Lie algebra homology is the left derived functor of taking coinvariants which is the same as .
  • Hochschild homology is the left derived functor of taking coinvariants which is the same as .

Instead of taking individual left derived functors one can also take the total derived functor of the tensor functor. This gives rise to the derived tensor product where is the derived category.

Naturality

Derived functors and the long exact sequences are "natural" in several technical senses.

First, given a commutative diagram of the form

(where the rows are exact), the two resulting long exact sequences are related by commuting squares:

Second, suppose η : FG is a natural transformation from the left exact functor F to the left exact functor G. Then natural transformations Riη : RiFRiG are induced, and indeed Ri becomes a functor from the functor category of all left exact functors from A to B to the full functor category of all functors from A to B. Furthermore, this functor is compatible with the long exact sequences in the following sense: if

is a short exact sequence, then a commutative diagram

is induced.

Both of these naturalities follow from the naturality of the sequence provided by the snake lemma.

Conversely, the following characterization of derived functors holds: given a family of functors Ri: AB, satisfying the above, i.e. mapping short exact sequences to long exact sequences, such that for every injective object I of A, Ri(I)=0 for every positive i, then these functors are the right derived functors of R0.

Generalization

The more modern (and more general) approach to derived functors uses the language of derived categories.

In 1968 Quillen developed the theory of model categories, which give an abstract category-theoretic system of fibrations, cofibrations and weak equivalences. Typically one is interested in the underlying homotopy category obtained by localizing against the weak equivalences. A Quillen adjunction is an adjunction between model categories that descends to an adjunction between the homotopy categories. For example, the category of topological spaces and the category of simplicial sets both admit Quillen model structures whose nerve and realization adjunction gives a Quillen adjunction that is in fact an equivalence of homotopy categories. Particular objects in a model structure have “nice properties” (concerning the existence of lifts against particular morphisms), the “fibrant” and “cofibrant” objects, and every object is weakly equivalent to a fibrant-cofibrant “resolution.”

Although originally developed to handle the category of topological spaces Quillen model structures appear in numerous places in mathematics; in particular the category of chain complexes from any Abelian category (modules, sheaves of modules on a topological space or scheme, etc.) admit a model structure whose weak equivalences are those morphisms between chain complexes preserving homology. Often we have a functor between two such model categories (e.g. the global sections functor sending a complex of Abelian sheaves to the obvious complex of Abelian groups) that preserves weak equivalences *within the subcategory of “good” (fibrant or cofibrant) objects.* By first taking a fibrant or cofibrant resolution of an object and then applying that functor, we have successfully extended it to the whole category in such a way that weak equivalences are always preserved (and hence it descends to a functor from the homotopy category). This is the “derived functor.” The “derived functors” of sheaf cohomology, for example, are the homologies of the output of this derived functor. Applying these to a sheaf of Abelian groups interpreted in the obvious way as a complex concentrated in homology, they measure the failure of the global sections functor to preserve weak equivalences of such, its failure of “exactness.” General theory of model structures shows the uniqueness of this construction (that it does not depend of choice of fibrant or cofibrant resolution, etc.)

References

  • Manin, Yuri Ivanovich; Gelfand, Sergei I. (2003), Methods of Homological Algebra, Berlin, New York: Springer-Verlag, ISBN 978-3-540-43583-9
  • Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.

Read other articles:

Kepah adalah sejenis kerang (bivalvia) yang termasuk hewan bertubuh lunak (moluska).Kata ini sering diterapkan hanya pada hewan yang dapat dimakan[1] dan hidup sebagai infauna, menghabiskan sebagian besar hidupnya setengah terkubur di pasir dasar laut atau dasar sungai. Kerang memiliki dua cangkang berukuran sama yang dihubungkan oleh dua otot adduktor dan memiliki kaki penggali yang kuat. Mereka hidup di lingkungan air tawar dan laut; di air asin mereka lebih suka menggali ke dalam lump…

Haha하하Informasi latar belakangNama lahirHa Dong-hoon (하동훈)Lahir20 Agustus 1979 (umur 44)Stuttgart, Baden-Württemberg, Jerman Barat[1][2]GenreK-pop, electropop, hip hop, reggae fusionPekerjaanPenyanyirapperpenulis laguproduser rekamanentertaineraktorpresenter televisiTahun aktif2001 (2001)–sekarangLabelQuan EntertainmentBigfoot EntertainmentArtis terkaitSkull, 10cm, Davichi, MC Mong, Tiger JK, Psy, Running Man Brothers, Ya Man Tv Nama KoreaHangul하동훈 Ha…

Carex firma Klasifikasi ilmiah Kerajaan: Plantae Divisi: Tracheophyta Kelas: Liliopsida Ordo: Poales Famili: Cyperaceae Genus: Carex Spesies: Carex firma Nama binomial Carex firmaHost Carex firma adalah spesies tumbuhan seperti rumput yang tergolong ke dalam famili Cyperaceae. Spesies ini juga merupakan bagian dari ordo Poales. Spesies Carex firma sendiri merupakan bagian dari genus Carex.[1] Nama ilmiah dari spesies ini pertama kali diterbitkan oleh Host. Referensi ^ Carex. The Plant Li…

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (décembre 2015). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Pour les articles homonymes, voir Louis II. Po…

Cet article est une ébauche concernant une chronologie ou une date. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Juillet 2013 Nombre de jours 31 Premier jour Lundi 1er juillet 20131er jour de la semaine 27 Dernier jour Mercredi 31 juillet 20133e jour de la semaine 31 Calendrier juillet 2013 Sem Lu Ma Me Je Ve Sa Di 27 1er 2 3 4 5 6 7 28 8 9 10 11 12 13 14 29 15 16 17 18 19 20 21 30 22 23 24 25 26 …

Resin penukar ion. Pertukaran ion dapat berlangsung antara dua elektrolit atau antara suatu larutan elektrolit dengan sebuah kompleks. Biasanya istilah ini mengacu kepada proses pemurnian, pemisahan, dan dekontaminasi larutan dengan penukar ion padat yang bersifat polimerik at au mineralik. Benda yang biasanya digunakan untuk melakukan pertukaran ion adalah resin penukar ion, zeolit, montmorilonit, tanah liat, dan humus tanah. Penukar ion dapat menjadi penukar kation yang melakukan pertukaran io…

MassielMassiel pada 1968Informasi latar belakangNama lahirMaría de los Ángeles Felisa Santamaría EspinosaLahir02 Agustus 1947 (umur 76)AsalMadrid, SpanyolGenrePop, lagu protesPekerjaanPenyanyi, pemeran, pembawa acara televisiInstrumenVokalTahun aktif1966–1996, 2006-2007 María de los Ángeles Felisa Santamaría Espinosa (lahir 2 Agustus 1947), yang lebih dikenal sebagai Massiel, adalah seorang penyanyi pop Spanyol. Ia memenangkan Kontes Lagu Eurovision 1968 dengan lagu La, la, la. Refe…

2S38 BMP-3 Derivatsiya-PVO. Self-propelled air defense vehicle based on BMP-3 chassis fitted with a 57 mm autocannon and passive reconnaissance and target tracking equipment. BMP-3 ialah kendaraan penempur infanteri amfibi Uni Soviet, penerus dari BMP-1 dan BMP-2. BMP merupakan singkatan dari Boevaya Mashina Pehoty Боевая Машина Пехоты, (Kendaraan Penempur Infanteri).[1] Sejarah Pengembangan Rancangan dari BMP-3 atau Objekt 688M bisa dilacak asal muasalnya dari purwarup…

Chemical compound CinanserinClinical dataATC codenoneIdentifiers IUPAC name (2E)-N-(2-{[3-(dimethylamino)propyl]thio}phenyl)-3-phenylacrylamide CAS Number1166-34-3 YPubChem CID5475158ChemSpider4584027 NUNIIKI6J9OY7A3ChEBICHEBI:145999ChEMBLChEMBL18786 NCompTox Dashboard (EPA)DTXSID7045653 ECHA InfoCard100.220.552 Chemical and physical dataFormulaC20H24N2OSMolar mass340.49 g·mol−13D model (JSmol)Interactive image SMILES CN(C)CCCSC1=CC=CC=C1NC(=O)\C=C\C2=CC=CC=C2 InChI InChI=…

العلاقات التشادية السورية تشاد سوريا   تشاد   سوريا تعديل مصدري - تعديل   العلاقات التشادية السورية هي العلاقات الثنائية التي تجمع بين تشاد وسوريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة تشاد سوريا المساح…

Questa voce sull'argomento calciatori brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Wandeir Nazionalità  Brasile Altezza 177 cm Calcio Ruolo Attaccante Termine carriera 2017 Carriera Giovanili  Cruzeiro Squadre di club1 1998-2002 Cruzeiro5 (1)2002-2003 Cementarnica 5512 (5)2003-2005 Vardar57 (36)2005-2006 Kickers Offenbach15 (0)2006-2007 Vardar22 (12)2007…

Italian TV series or program ValentinaGenreErotic thrillerBased onValentina by Guido CrepaxStarring Demetra Hampton Russel Case Antonello Fassari Mary Sellers Theme music composerFio ZanottiOpening themeValentinaComposerFio ZanottiCountry of originItalyOriginal languageItalianNo. of seasons1No. of episodes13 (list of episodes)ProductionExecutive producerRoberto CacciaguerraProducersAngelo Rizzoli, Jr.Production locationsMilanBarcelonaRunning time30 minutesOriginal releaseNetworkItalia 1ReleaseSe…

Zona subduksi di atas menunjukkan struktur prisma akresi Prisma akresi terbentuk dari sedimen yang terakresi ke dalam lempeng tektonik yang menujam ke bawah batas lempeng konvergen. Sebagian besar material di prisma akresi terdiri dari sedimen-sedimen laut yang tergerus dari bagian lempeng samudra yang menujam dan di beberapa kasus juga berasal dari produk-produk erosi dari busur kepulauan vulkanik yang terbentuk di lempeng diatasnya. Material-material di prisma akresi Material yang tergabung di…

Montenegrin Chetnik leader Blažo Đukanović, c. 1940. Blažo Đukanović (Serbian Cyrillic: Блажо Ђукановић; 26 November 1883 – 21 October 1943) was a Montenegrin Serb Chetnik brigadier general and political leader in the Italian governorate of Montenegro.[1][2] Đukanović completed gymnasium and his university education in Russia. Since 1939 he served as a judge at the High Military Court of Yugoslavia. He became the Ban of the Zeta Banovina in 1941, right up …

Iranian naturopath (1931–2004) Fereydoon BatmanghelidjBorn1931Tehran, Imperial State of IranDied15 November 2004Virginia, U.S.OccupationNaturopath Fereydoon Batmanghelidj (1931 – 15 November 2004) was an Iranian doctor, naturopath, HIV/AIDS denialist and writer. He is best known for believing increased water consumption is the cure for most disease, a view not supported by clinical evidence and considered quackery by medical experts.[1][2][3] Life and family Fereydoon…

The Life and Legend of Wyatt EarpHugh O'Brian sebagai Wyatt Earp dan Adele Mara (1961)GenreBaratDitulis olehPaul LandresFrank McDonaldSutradaraFrederick Hazlitt BrennanJohn DunkelDaniel B. UllmanPemeranHugh O'BrianMason Alan DinehartDouglas FowleyPenata musikHerman Stein Ken DarbyNegara asalAmerika SerikatBahasa asliInggrisJmlh. musim6Jmlh. episode229ProduksiProduser eksekutifLouis F. EdelmanRobert SiskDurasi30 menitRumah produksiWyatt Earp EnterprisesDistributorSFM EntertainmentRilis asli…

Village in Tirana, AlbaniaHekalVillageHekalCoordinates: 41°15′N 19°56′E / 41.250°N 19.933°E / 41.250; 19.933Country AlbaniaCountyTiranaMunicipalityTiranaMunicipal unitPetrelëTime zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Hekal is a village in the former municipality of Petrelë in Tirana County, Albania.[1] At the 2015 local government reform it became part of the municipality Tirana.[2] References ^ Qarku Tirane. Shoqata e Komun…

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі орг…

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒體…

Георгій Миколайович Висоцький Георгій Миколайович ВисоцькийНародився 7 (19) лютого 1865(1865-02-19)с. Микитівка, Глухівський повіт Чернігівська губернія, Російська імперіяПомер 6 квітня 1940(1940-04-06) (75 років)м. Харків, УРСРКраїна Російська імперія, УНР, СССРНаціональність українецьД…

Kembali kehalaman sebelumnya