Share to: share facebook share twitter share wa share telegram print page

Discharging method (discrete mathematics)

The discharging method is a technique used to prove lemmas in structural graph theory.[1] Discharging is most well known for its central role in the proof of the four color theorem. The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list. The presence of the desired subgraph is then often used to prove a coloring result.[1]

Most commonly, discharging is applied to planar graphs. Initially, a charge is assigned to each face and each vertex of the graph. The charges are assigned so that they sum to a small positive number. During the Discharging Phase the charge at each face or vertex may be redistributed to nearby faces and vertices, as required by a set of discharging rules. However, each discharging rule maintains the sum of the charges. The rules are designed so that after the discharging phase each face or vertex with positive charge lies in one of the desired subgraphs. Since the sum of the charges is positive, some face or vertex must have a positive charge. Many discharging arguments use one of a few standard initial charge functions (these are listed below). Successful application of the discharging method requires creative design of discharging rules.

An example

In 1904, Wernicke introduced the discharging method to prove the following theorem, which was part of an attempt to prove the four color theorem.

Theorem: If a planar graph has minimum degree 5, then it either has an edge with endpoints both of degree 5 or one with endpoints of degrees 5 and 6.

Proof: We use , , and to denote the sets of vertices, faces, and edges, respectively. We call an edge light if its endpoints are both of degree 5 or are of degrees 5 and 6. Embed the graph in the plane. To prove the theorem, it is sufficient to only consider planar triangulations (because, if it holds on a triangulation, when removing nodes to return to the original graph, neither node on either side of the desired edge can be removed without reducing the minimum degree of the graph below 5). We arbitrarily add edges to the graph until it is a triangulation. Since the original graph had minimum degree 5, each endpoint of a new edge has degree at least 6. So, none of the new edges are light. Thus, if the triangulation contains a light edge, then that edge must have been in the original graph.

We give the charge to each vertex and the charge to each face , where denotes the degree of a vertex and the length of a face. (Since the graph is a triangulation, the charge on each face is 0.) Recall that the sum of all the degrees in the graph is equal to twice the number of edges; similarly, the sum of all the face lengths equals twice the number of edges. Using Euler's Formula, it's easy to see that the sum of all the charges is 12:

We use only a single discharging rule:

  • Each degree 5 vertex gives a charge of 1/5 to each neighbor.

We consider which vertices could have positive final charge. The only vertices with positive initial charge are vertices of degree 5. Each degree 5 vertex gives a charge of 1/5 to each neighbor. So, each vertex is given a total charge of at most . The initial charge of each vertex v is . So, the final charge of each vertex is at most . Hence, a vertex can only have positive final charge if it has degree at most 7. Now we show that each vertex with positive final charge is adjacent to an endpoint of a light edge.

If a vertex has degree 5 or 6 and has positive final charge, then received charge from an adjacent degree 5 vertex , so edge is light. If a vertex has degree 7 and has positive final charge, then received charge from at least 6 adjacent degree 5 vertices. Since the graph is a triangulation, the vertices adjacent to must form a cycle, and since it has only degree 7, the degree 5 neighbors cannot be all separated by vertices of higher degree; at least two of the degree 5 neighbors of must be adjacent to each other on this cycle. This yields the light edge.

References

  1. ^ a b Cranston, Daniel W.; West, Douglas B. (1 April 2017). "An introduction to the discharging method via graph coloring". Discrete Mathematics. 340 (4): 766–793. arXiv:1306.4434. doi:10.1016/j.disc.2016.11.022. ISSN 0012-365X. Retrieved 25 February 2023.

Read other articles:

L’edizione 1985 del Pallone d'oro, 30ª edizione del premio calcistico istituito dalla rivista francese France Football, fu vinta dal francese Michel Platini (Juventus). I giurati che votarono furono 26, provenienti da Austria, Belgio, Bulgaria, Cecoslovacchia, Danimarca, Finlandia, Francia, Germania Est, Germania Ovest, Grecia, Inghilterra, Irlanda, Italia, Jugoslavia, Lussemburgo, Paesi Bassi, Polonia, Portogallo, Romania, Scozia, Spagna, Svezia, Svizzera, Turchia, Ungheria e Unione Sovietic…

Badan Intelijen PusatSeal of the Central Intelligence AgencyFlag of the Central Intelligence AgencyInformasi Badan intelijenDibentuk18 September 1947; 76 tahun lalu (1947-09-18)Nomenklatur Badan intelijen sebelumnyaKantor Layanan Strategis[1]Kantor pusatGeorge Bush Center for IntelligenceLangley, Virginia, Amerika Serikat38°57′07″N 77°08′46″W / 38.95194°N 77.14611°W / 38.95194; -77.14611SloganThe Work of a Nation. The Center of Intelligence.Unoffi…

Railway station in Hampshire, England For other uses, see Winchester railway station (disambiguation). WinchesterStation frontage in 2016General informationLocationWinchester, City of WinchesterEnglandGrid referenceSU477300Managed bySouth Western RailwayPlatforms2Other informationStation codeWINClassificationDfT category C1HistoryOpened10 June 1839Passengers2018/19 5.242 million2019/20 4.872 million2020/21 1.111 million2021/22 2.960 million Interchange  38,4762022/23 3.724 million …

Church in Cheshire, EnglandSt Peter's Church, WavertonSt Peter's Church, WavertonSt Peter's Church, WavertonLocation in Cheshire53°09′52″N 2°48′23″W / 53.1645°N 2.8065°W / 53.1645; -2.8065OS grid referenceSJ 462,633LocationWaverton, CheshireCountryEnglandDenominationAnglicanWebsiteSt Peter's Church, WavertonHistoryStatusParish churchDedicationSt PeterArchitectureFunctional statusActiveHeritage designationGrade II*Designated1 March 1967Architect(s)John DouglasA…

العلاقات السريلانكية الميانمارية سريلانكا ميانمار   سريلانكا   ميانمار تعديل مصدري - تعديل   العلاقات السريلانكية الميانمارية هي العلاقات الثنائية التي تجمع بين سريلانكا وميانمار.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدول…

Sumber referensi dari artikel ini belum dipastikan dan mungkin isinya tidak benar. Mohon periksa, kembangkan artikel ini, dan tambahkan sumber yang benar pada bagian yang diperlukan. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Ice AgeSutradaraChris WedgeCarlos SaldanhaProduserJohn C. DonkinLori ForteDitulis olehMichael J. WilsonMichael BergPemeranRay RomanoJohn LeguizamoDenis LearyPenata musikDavid NewmanDistributor20th Century FoxTanggal rilis 15 Maret 2002 (2…

KwarasanDesaKantor Desa KwarasanNegara IndonesiaProvinsiJawa TengahKabupatenSukoharjoKecamatanGrogolKode pos57552Kode Kemendagri33.11.09.2010 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Kwarasan adalah desa di kecamatan Grogol, Sukoharjo, Jawa Tengah, Indonesia. Pembagian wilayah Desa Kwarasan terdiri dari beberapa dukuh, antara lain: Bangorejo Danyung Danyung Baru Jetis Kendalsari Kwarasan Munyung Ngasinan Tanjunganom Pendidikan Lembaga pendidikan formal di Desa Kwarasan, ant…

GhibahSutradaraMonty TiwaProduserDheeraj KalwaniDitulis oleh Aviv Elham Monty Tiwa Riza Pahlevi Vidya Ariestya Pemeran Anggika Bölsterli Verrell Bramasta Zsa Zsa Utari Arafah Rianti Opie Kumis Asri Welas Josephine Firmstone Adila Fitri Penata musikJoseph S. DjafarSinematograferSuhendriPenyunting Teguh Raharjo Bobby Prabowo Perusahaanproduksi Blue Water Films Dee Company DistributorDisney+ HotstarTanggal rilis 30 Juli 2021 (2021-07-30) (Indonesia) Durasi98 menitNegaraIndonesiaBaha…

  هذه المقالة عن علي باشا مبارك. لمعانٍ أخرى، طالع مبارك (توضيح). هذه المقالة لا تحتوي إلّا على استشهادات عامة فقط. فضلًا، ساهم بتحسينها بعزو الاستشهادات إلى المصادر في متن المقالة. (يناير_2013) علي باشا مبارك   معلومات شخصية الميلاد العقد 1820  مصر  الوفاة 14 نوفمبر 1893 …

RabdomiolisisUrin pengidap rabdomiolisis memiliki ciri berupa warna coklat yang disebabkan oleh mioglobinuriaInformasi umumPelafalan/ˌræbdoʊmaɪˈɒlɪsɪs/SpesialisasiKedokteran gawat darurat Prevalensi26.000 per tahun (Amerika Serikat)[1] Rabdomiolisis adalah suatu keadaan ketika otot rangka mengalami kerusakan dengan cepat. Hal ini dapat menyebabkan kebocoran protein otot mioglobin ke urin, sehingga warnanya menjadi seperti teh. Gejala-gejala lainnya yaitu nyeri otot, rasa lem…

Elon MuskElon Musk pada tahun 2023LahirElon Reeve Musk28 Juni 1971 (umur 52)Pretoria, Afrika SelatanTempat tinggalBel Air, Los Angeles, California, A.S.[1][2]Warga negaraAfrika Selatan (1971 - sekarang)Kanada (1989 - sekarang)Amerika Serikat (2002 - sekarang)AlmamaterQueen's UniversityUniversity of Pennsylvania[3][4]PekerjaanPengusaha, teknisi dan investorTahun aktif1995–sekarangDikenal atasSpaceX, PayPal, Tesla Motors, Hyperloop, SolarCity, OpenAI, Th…

Chinese aircraft carrier Type 001 redirects here. For other uses, see Type 1 (disambiguation). Liaoning (16) The aircraft carrier Liaoning in Hong Kong in 2017 Class overview BuildersDalian Shipbuilding Industry Operators People's Liberation Army Navy Preceded byKiev class Succeeded byType 002 Shandong Completed1 History → Soviet Union → Ukraine NameRiga (1988) then Varyag (1990) NamesakeCity of Riga, Latvia (1988) then Varyag, named for the Varangians (1990), the name Varyag was t…

This article is about the Australian NEW station. For other uses, see New. Television station in Perth, Western AustraliaNEWPerth, Western AustraliaChannelsDigital: 11 (VHF)Virtual: 10Branding10ProgrammingAffiliations10 (O&O)OwnershipOwnerParamount Networks UK & Australia (Ten Network Holdings)(Network TEN (Perth) Pty Ltd)HistoryFirst air date20 May 1988; 35 years ago (1988-05-20)Former call signsWCW (changed to NEW prior to launch)Former channel number(s)Analog: 10 (VH…

Questa voce sull'argomento calciatori camerunesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Dorge Kouemaha Nazionalità  Camerun Altezza 192 cm Calcio Ruolo Attaccante Termine carriera 2018 Carriera Giovanili 1997-2000 Lumièere de Banka2000-2003 Diap Banja Squadre di club1 2004 Victoria United Limbè14 (16)2004-2006 Arīs Salonicco12 (0)2006-2007 Tatabánya33 (14)2007-2008 Debrece…

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個人的…

Protected area in California, U.S. Tule Elk State Natural ReserveLocation8653 Station Road, Buttonwillow, CA 93206Nearest cityTupman, CaliforniaCoordinates35°19′17″N 119°21′51″W / 35.3214°N 119.3642°W / 35.3214; -119.3642Created1932OperatorCalifornia State Parkswww.parks.ca.gov?page_id=584 The Tule Elk State Natural Reserve, formerly the Tupman Zoological Reserve, is a protected area operated by California State Parks for the benefit of the general public…

City in Michigan, United StatesNorthville, MichiganCityCity of NorthvilleEast Main StreetMotto: Historically DistinctiveLocation within Oakland County (top) and Wayne County (bottom)NorthvilleLocation within the state of MichiganShow map of MichiganNorthvilleLocation within the United StatesShow map of the United StatesCoordinates: 42°26′00″N 83°29′00″W / 42.43333°N 83.48333°W / 42.43333; -83.48333CountryUnited StatesStateMichiganCountiesOakland and Wayne…

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sintok – news · newspapers · books · scholar · JSTOR (March 2012) (Learn how and when to remove this message) Sintok in Kubang Pasu District Sintok is a small town Kubang Pasu District, Kedah, Malaysia. Universiti Utara Malaysia (UUM) is situated here. Sintok is located about 52 ki…

Roman general and statesman Titus Quinctius FlamininusGold stater of Titus Quinctius Flamininus in the British Museum, ca. 197/196 (or 191) BC.Bornc. 229 BCDied174 BCNationalityRomanOfficeConsul (198 BC)Censor (189 BC)Military serviceBattles/warsBattle of Cynoscephalae (197 BC)AwardsTriumph (194 BC) Jean-Pierre Saint-Ours, Flamininus Granting Liberty to Greece at the Isthmian Games, 1780, drawing Flamininus restoring Liberty to Greece at the Isthmian Games Titus Quinctius Flamininus (c. 228 – …

Under the Hawthorn TreeFilm posterSutradaraZhang YimouProduserZhang Weiping, Cao Yuayi, Hugo Shong, Bill KongDitulis olehYin Lichuan, Gu XiaobaiBerdasarkanHawthorn Tree Foreveroleh Ai MiPemeranZhou Dongyu, Shawn DouPenata musikQigang ChenSinematograferZhao XiaodingPenyuntingMeng PeicongDistributorEdko Films Ltd.Tanggal rilis 15 September 2010 (2010-09-15) Durasi114 menitNegaraTiongkokBahasaMandarinPendapatankotor¥148 juta (Tiongkok) Under the Hawthorn Tree (Hanzi sederhana: 山…

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya