Share to: share facebook share twitter share wa share telegram print page

Epipolar geometry

Typical use case for epipolar geometry
Two cameras take a picture of the same scene from different points of view. The epipolar geometry then describes the relation between the two resulting views.

Epipolar geometry is the geometry of stereo vision. When two cameras view a 3D scene from two distinct positions, there are a number of geometric relations between the 3D points and their projections onto the 2D images that lead to constraints between the image points. These relations are derived based on the assumption that the cameras can be approximated by the pinhole camera model.

Definitions

The figure below depicts two pinhole cameras looking at point X. In real cameras, the image plane is actually behind the focal center, and produces an image that is symmetric about the focal center of the lens. Here, however, the problem is simplified by placing a virtual image plane in front of the focal center i.e. optical center of each camera lens to produce an image not transformed by the symmetry. OL and OR represent the centers of symmetry of the two cameras lenses. X represents the point of interest in both cameras. Points xL and xR are the projections of point X onto the image planes.

Epipolar geometry

Each camera captures a 2D image of the 3D world. This conversion from 3D to 2D is referred to as a perspective projection and is described by the pinhole camera model. It is common to model this projection operation by rays that emanate from the camera, passing through its focal center. Each emanating ray corresponds to a single point in the image.

Epipole or epipolar point

Since the optical centers of the cameras lenses are distinct, each center projects onto a distinct point into the other camera's image plane. These two image points, denoted by eL and eR, are called epipoles or epipolar points. Both epipoles eL and eR in their respective image planes and both optical centers OL and OR lie on a single 3D line.[1]

Epipolar line

The line OLX is seen by the left camera as a point because it is directly in line with that camera's lens optical center. However, the right camera sees this line as a line in its image plane. That line (eRxR) in the right camera is called an epipolar line. Symmetrically, the line ORX is seen by the right camera as a point and is seen as epipolar line eLxLby the left camera.

An epipolar line is a function of the position of point X in the 3D space, i.e. as X varies, a set of epipolar lines is generated in both images. Since the 3D line OLX passes through the optical center of the lens OL, the corresponding epipolar line in the right image must pass through the epipole eR (and correspondingly for epipolar lines in the left image). All epipolar lines in one image contain the epipolar point of that image.[1] In fact, any line which contains the epipolar point is an epipolar line since it can be derived from some 3D point X.

Epipolar plane

As an alternative visualization, consider the points X, OL & OR that form a plane called the epipolar plane. The epipolar plane intersects each camera's image plane where it forms lines—the epipolar lines. The epipolar plane and all epipolar lines intersect the epipoles regardless of where X is located.

Epipolar constraint and triangulation

If the relative position of the two cameras is known, this leads to two important observations:

  • Assume the projection point xL is known, and the epipolar line eRxR is known and the point X projects into the right image, on a point xR which must lie on this particular epipolar line. This means that for each point observed in one image the same point must be observed in the other image on a known epipolar line. This provides an epipolar constraint: the projection of X on the right camera plane xR must be contained in the eRxR epipolar line. All points X e.g. X1, X2, X3 on the OLXL line will verify that constraint. It means that it is possible to test if two points correspond to the same 3D point. Epipolar constraints can also be described by the fundamental matrix,[1] or in the case of noramlized image coordatinates, the essential matrix[2] between the two cameras.
  • If the points xL and xR are known, their projection lines are also known. If the two image points correspond to the same 3D point X the projection lines must intersect precisely at X. This means that X can be calculated from the coordinates of the two image points, a process called triangulation.[3]

Simplified cases

The epipolar geometry is simplified if the two camera image planes coincide. In this case, the epipolar lines also coincide (eLXL = eRXR). Furthermore, the epipolar lines are parallel to the line OLOR between the centers of projection, and can in practice be aligned with the horizontal axes of the two images. This means that for each point in one image, its corresponding point in the other image can be found by looking only along a horizontal line. If the cameras cannot be positioned in this way, the image coordinates from the cameras may be transformed to emulate having a common image plane. This process is called image rectification.

Epipolar geometry of pushbroom sensor

In contrast to the conventional frame camera which uses a two-dimensional CCD, pushbroom camera adopts an array of one-dimensional CCDs to produce long continuous image strip which is called "image carpet". Epipolar geometry of this sensor is quite different from that of pinhole projection cameras. First, the epipolar line of pushbroom sensor is not straight, but hyperbola-like curve. Second, epipolar 'curve' pair does not exist.[4] However, in some special conditions, the epipolar geometry of the satellite images could be considered as a linear model.[5]

See also

Notes

  1. ^ a b c Hartley & Zisserman 2003, pp. 240-241
  2. ^ Hartley & Zisserman 2003, p. 257
  3. ^ Hartley & Zisserman 2003, p. 12
  4. ^ Jaehong Oh. "Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-based Georeferencing of Aerial Images" Archived 2012-03-31 at the Wayback Machine, 2011, accessed 2011-08-05.
  5. ^ Nurollah Tatar and Hossein Arefi. "Stereo rectification of pushbroom satellite images by robustly estimating the fundamental matrix", 2019, pp. 1–19 accessed 2019-06-03.

References

  • Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in computer vision. Cambridge University Press. ISBN 0-521-54051-8.

Further reading

  • Vishvjit S. Nalwa (1993). A Guided Tour of Computer Vision. Addison Wesley. pp. 216–240. ISBN 0-201-54853-4.

Read other articles:

Injil Matius dari Kitab Rusa, abad ke-10 Dalam Kekristenan, istilah Lima Amanat Matius merujuk kepada lima amanat khusus yang dibuat oleh Yesus pada Injil Matius.[1][2] Lima amanat tersebut adalah: Kotbah di Bukit, Amanat Misionaris, Amanat Parabolik, Amanat atas Gereja dan Amanat atas Akhir Zaman. Setiap amanat memiliki sebuah paralel yang lebih pendek dalam Injil Markus atau Injil Lukas.[3] Referensi ^ The Cradle, the Cross, and the Crown: An Introduction to the New Tes…

 Bagian dari seriManga Daftar manga Simbol · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z Daftar mangaka A · B · C · E&#…

JoongAng IlboGedung JoongAng IlboTipeKoran harianFormatBerlinerPemilikJoongAng Media NetworkPenerbitSong Pil-hoDidirikan22 September 1965Pandangan politikKonservatif, bisnisPusatSunhwa-dong, Jung-gu, Seoul, Korea SelatanSitus webwww.joongang.co.kr Nama KoreaHangul중앙일보 Hanja中央日報 Alih AksaraJungang IlboMcCune–ReischauerChungang-ilbo JoongAng Ilbo adalah sebuah koran konservatif yang diterbitkan di Seoul, Korea Selatan. JoongAng Ilbo adalah koran terbesar ke-3 di Korea Selatan. Jo…

Perang Boer KeduaBagian dari Perang BoerTanggal11 Oktober 1899 – 31 Mei 1902LokasiAfrika Selatan, Swaziland[1]Hasil Perjanjian VereenigingPerubahanwilayah Perjanjian VereenigingPihak terlibat Kekaisaran Britania India Britania Australia Sukarelawan  Kanada dan  Selandia Baru Republik Boer Negara Bebas Oranje Republik TransvaalTokoh dan pemimpin Lord Milner Sir Redvers Buller Lord Kitchener Lord Roberts Paul Kruger Louis Botha Schalk W. Burger Koos de la Rey Martinus Steyn Chr…

Article principal : Économie du Japon. Siège du ministère japonais des Finances, 3-1-1 Kasumigaseki, Chiyoda-ku, Tōkyō-to en décembre 2005. L'administration japonaise a actuellement le deuxième budget de l'État au monde après celui du budget fédéral des États-Unis[1] grâce à sa puissante économie mais la dette publique du Japon représente, début 2021, 266 % du produit intérieur brut[2] contre en 2013 plus de 245 %[3]. Caractéristiques Timbre fiscal de 5 sen de 1…

Questa voce sull'argomento calciatori georgiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ilia K'andelak'i Nazionalità  Georgia Altezza 180 cm Peso 75 kg Calcio Ruolo Difensore Termine carriera 2014 Carriera Squadre di club1 1996-1997 35-STU Tbilisi10 (0)1997-1999 Dinamo-2 Tbilisi8 (0)1999-2000 Tbilisi10 (0)2000-2005 Dinamo Tbilisi131 (1)2005-2007 Čornomorec'39 (0)2007-2008…

Device for transmitting messages in written form by electrical signals Teletype redirects here. For other uses, see Teletype (disambiguation). For the telecommunications system consisting of teleprinters connected by radio, see Radioteletype. Teletype teleprinters in use in England during World War II Example of teleprinter art: a portrait of Dag Hammarskjöld, 1962 A teleprinter (teletypewriter, teletype or TTY) is an electromechanical device that can be used to send and receive typed messages …

KRI Cakra (401) Tentang kelas Nama:Cakra classPembangun:Howaldtswerke-Deutsche WerftOperator: Angkatan Laut IndonesiaDidahului oleh:Kapal selam kelas WhiskeyDigantikan oleh:Kapal selam kelas ScorpèneDibangun:1977–1981Bertugas:1981–sekarangSelesai:2Aktif:1Hilang:1 Ciri-ciri umum Jenis Kapal selam serbuBerat benaman 1,285 ton di permukaan[1] 1,390 ton menyelamPanjang 595 m (1.952 ft 1 in)Lebar 62 m (203 ft 5 in)Sarat air 54 m (177 ft 2 …

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Microtus longicaudus Microtus longicaudus Status konservasiRisiko rendahIUCN42627 TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoRodentiaFamiliCricetidaeGenusMicrotusSpesiesMicrotus longicaudus (Merriam, 1888) Tata namaSinonim takson Daftar Arvic…

Ini adalah daftar katedral di Nikaragua. Katolik Katedral Gereja Katolik di Nikaragua:[1][2][3] Nama Tahun Kota Gambar Lokasi Catatan Katedral Bunda RosarioCatedral Nuestra Señora del Rosario Bluefields Katedral Bunda Maria dari Rosario Yang Amat SuciCatedral Nuestra Señora del Rosario 1888 Estelí 13°05′35″N 86°21′19″W / 13.092959°N 86.355388°W / 13.092959; -86.355388 Katedral Bunda Maria yang DikandungCatedral de Nuestra Señora de …

Argentine footballer and manager Luis Carniglia Personal informationFull name Luis Antonio CarnigliaDate of birth (1917-10-04)4 October 1917Place of birth Olivos, ArgentinaDate of death 22 June 2001(2001-06-22) (aged 83)Place of death Buenos Aires, ArgentinaPosition(s) StrikerYouth career1932–1933 Club de OlivosSenior career*Years Team Apps (Gls)1933–1936 Tigre ? (?)1936–1941 Boca Juniors 54 (17)1942–1945 Chacarita 14 (3)1945–1948 Atlas 1951–1952 Nice 10 (1)1952–1953 Toulon 26…

Mickey Mouse ClubhouseGenreSerial televisi anak-anakPetualanganKomediFantasiPembuatBobs GannawayBerdasarkanMickey Mouseoleh Walt Disney dan Ub IwerksPengembangBobs GannawaySutradaraRob LaDucaSherie PollackHowy ParkinsVictor CookDonovan CookBroni LikomanovPhil WeinsteinPengisi suaraWayne Allwine (2006–2009)Bret Iwan (2009–2016)Tony AnselmoRussi TaylorTress MacNeilleBill FarmerWill RyanApril WinchellJim CummingsDee Bradley BakerFrank WelkerRob PaulsenCorey BurtonLagu pembukaLagu tema Mickey Mo…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2015年7月23日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目內容疑欠准确,有待查證。 (2015年7月23日)請在讨论页討論問題所在及加以改善,若此條目仍有爭議及准确度欠佳,會被提出存廢討論。 此條目之中立性有争议…

Village in Connecticut, United States This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: East Litchfield Village, Connecticut – news · newspapers · books · scholar · JSTOR (January 2022) (Learn how and when to remove this message) East Litchfield is an unincorporated village in the town of Litchfield, Litchfield County, Connecticut…

15th–16th-century literary work The frontispiece of a Jawi edition of the Malay Annals The Malay Annals (Malay: Sejarah Melayu, Jawi: سجاره ملايو), originally titled Sulalatus Salatin (Genealogy of Kings),[1] is a literary work that gives a romanticised history of the origin, evolution and demise of the great Malay maritime empire, the Malacca Sultanate.[2] The work, which was composed sometime between the 15th and 16th centuries, is considered one of the finest liter…

Australian aviation pioneer Oswald WattOswald Watt, Australian Flying CorpsBirth nameWalter Oswald WattNickname(s)TobyBorn11 February 1878Bournemouth, EnglandDied21 May 1921(1921-05-21) (aged 43)Bilgola, New South Wales, AustraliaAllegianceAustralia; FranceService/branchAustralian Military ForcesFrench Foreign LegionAustralian Flying CorpsYears of service1900–19RankLieutenant colonelUnitNSW Scottish Rifles (1900–14)Aviation Militaire (1914–16)No. 1 Squadron AFC (1916)Commands hel…

Toyota Corolla (E160)InformasiProdusenToyotaMasa produksiMei 2012–sekarangPerakitanJapan: Ōhira, Miyagi (Miyagi Ohira plant)[1]Bodi & rangkaBentuk kerangka4-door sedan5-door station wagonTata letakMesin depan, penggerak roda depan/4WDPlatformToyota B platformPenyalur dayaMesin1.3 L 1NR-FE I41.5 L 1NZ-FE I41.5 L 1NZ-FXE I4 (Hybrid)1.8 L 2ZR-FE I4Transmisi5-speed manualCVT automaticDimensiJarak sumbu roda2.600 mm (102,4 in)Panjang4.360 mm (171…

Angkatan Bersenjata BeninForces Armées BéninoisesLambang negara BeninDidirikan1960AngkatanAngkatan DaratAngkatan Laut Angkatan Udara BeninKepemimpinanPanglima TertinggiPresident Patrice TalonMenteri PertahananYarou Robert TheophileKepala Staf PertahananLaurent AmoussouKekuatan personelWajib militerTidakPersonel aktif4.750[1]BelanjaAnggaran$US73 juta (2011)[1]Persentase terhadap PDB1% (2011)[1]IndustriPemasok asing Amerika Serikat Rusia PrancisArtikel terkaitJenjang…

Police Service for the Royal Navy This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Royal Navy Police – news · newspapers · books · scholar · JSTOR (November 2010) (Learn how and when to remove this message) Royal Navy PoliceActive1944–PresentCountry United Kingdom of Great Britain and Northern IrelandAllegianceHM The KingBranchRoyal NavyTypeService Police…

AwardSardar-e-JungTypeBadgeAwarded forValourPresented byAzad HindEligibilitySoldiers of the Indische Legion, Indian National Army, and the Wehrmacht.StatusCurrently not existent.First awardedSecond World WarLast awardedSecond World WarTotalUnknownTotal awarded posthumouslyUnknownTotal recipientsColonel Pritam Singh Colonel Shaukat Hayat Malik, Lieutenant Kunwar Balwant Singh Captain Shangara Singh MannPrecedenceNext (higher)Sher-e-HindNext (lower)Vir-e-Hind The Sardar-e-Jung (Leader of…

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya