Share to: share facebook share twitter share wa share telegram print page

Euclid–Euler theorem

The Euclid–Euler theorem is a theorem in number theory that relates perfect numbers to Mersenne primes. It states that an even number is perfect if and only if it has the form 2p−1(2p − 1), where 2p − 1 is a prime number. The theorem is named after mathematicians Euclid and Leonhard Euler, who respectively proved the "if" and "only if" aspects of the theorem.

It has been conjectured that there are infinitely many Mersenne primes. Although the truth of this conjecture remains unknown, it is equivalent, by the Euclid–Euler theorem, to the conjecture that there are infinitely many even perfect numbers. However, it is also unknown whether there exists even a single odd perfect number.[1]

Statement and examples

A perfect number is a natural number that equals the sum of its proper divisors, the numbers that are less than it and divide it evenly (with remainder zero). For instance, the proper divisors of 6 are 1, 2, and 3, which sum to 6, so 6 is perfect.

A Mersenne prime is a prime number of the form Mp = 2p − 1, one less than a power of two. For a number of this form to be prime, p itself must also be prime, but not all primes give rise to Mersenne primes in this way. For instance, 23 − 1 = 7 is a Mersenne prime, but 211 − 1 = 2047 = 23 × 89 is not.

The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2p−1Mp, where Mp is a Mersenne prime.[1] The perfect number 6 comes from p = 2 in this way, as 22−1M2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.

History

Euclid proved that 2p−1(2p − 1) is an even perfect number whenever 2p − 1 is prime. This is the final result on number theory in Euclid's Elements; the later books in the Elements instead concern irrational numbers, solid geometry, and the golden ratio. Euclid expresses the result by stating that if a finite geometric series beginning at 1 with ratio 2 has a prime sum q, then this sum multiplied by the last term t in the series is perfect. Expressed in these terms, the sum q of the finite series is the Mersenne prime 2p − 1 and the last term t in the series is the power of two 2p−1. Euclid proves that qt is perfect by observing that the geometric series with ratio 2 starting at q, with the same number of terms, is proportional to the original series; therefore, since the original series sums to q = 2t − 1, the second series sums to q(2t − 1) = 2qtq, and both series together add to 2qt, two times the supposed perfect number. However, these two series are disjoint from each other and (by the primality of q) exhaust all the divisors of qt, so qt has divisors that sum to 2qt, showing that it is perfect.[2]

Over a millennium after Euclid, Alhazen c. 1000 CE conjectured that every even perfect number is of the form 2p−1(2p − 1) where 2p − 1 is prime, but he was not able to prove this result.[3] It was not until the 18th century, over 2000 years after Euclid,[4] that Leonhard Euler proved that the formula 2p−1(2p − 1) will yield all the even perfect numbers.[1][5] Thus, there is a one-to-one relationship between even perfect numbers and Mersenne primes; each Mersenne prime generates one even perfect number, and vice versa. After Euler's proof of the Euclid–Euler theorem, other mathematicians have published different proofs, including Victor-Amédée Lebesgue, Robert Daniel Carmichael, Leonard Eugene Dickson, John Knopfmacher, and Wayne L. McDaniel. Dickson's proof, in particular, has been commonly used in textbooks.[6]

This theorem was included in a web listing of the "top 100 mathematical theorems", dating from 1999, which later became used by Freek Wiedijk as a benchmark set to test the power of different proof assistants. By 2024, the proof of the Euclid–Euler theorem had been formalized in 7 of the 12 proof assistants recorded by Wiedijk.[7]

Proof

Euler's proof is short[1] and depends on the fact that the sum of divisors function σ is multiplicative; that is, if a and b are any two relatively prime integers, then σ(ab) = σ(a)σ(b). For this formula to be valid, the sum of divisors of a number must include the number itself, not just the proper divisors. A number is perfect if and only if its sum of divisors is twice its value.

Sufficiency

One direction of the theorem (the part already proved by Euclid) immediately follows from the multiplicative property: every Mersenne prime gives rise to an even perfect number. When 2p − 1 is prime, The divisors of 2p−1 are 1, 2, 4, 8, ..., 2p−1. The sum of these divisors is a geometric series whose sum is 2p − 1. Next, since 2p − 1 is prime, its only divisors are 1 and itself, so the sum of its divisors is 2p.

Combining these, Therefore, 2p−1(2p − 1) is perfect.[8][9][10]

Necessity

In the other direction, suppose that an even perfect number has been given, and partially factor it as 2kx, where x is odd. For 2kx to be perfect, the sum of its divisors must be twice its value:

(∗)

The odd factor 2k+1 − 1 on the right side of (∗) is at least 3, and it must divide x, the only odd factor on the left side, so x/(2k+1 − 1) is a proper divisor of x. Dividing both sides of (∗) by the common factor 2k+1 − 1 and taking into account the known divisors x and x/(2k+1 − 1) of x gives

other divisorsother divisors.

For this equality to be true, there can be no other divisors. Therefore, x/(2k+1 − 1) must be 1, and x must be a prime of the form 2k+1 − 1.[8][9][10]

References

  1. ^ a b c d Stillwell, John (2010), Mathematics and Its History, Undergraduate Texts in Mathematics, Springer, p. 40, ISBN 978-1-4419-6052-8.
  2. ^ Euclid (1956), The Thirteen Books of The Elements, Translated with introduction and commentary by Sir Thomas L. Heath, Vol. 2 (Books III–IX) (2nd ed.), Dover, pp. 421–426, ISBN 0-486-60089-0. See in particular Prop. IX.36.
  3. ^ O'Connor, John J.; Robertson, Edmund F., "Abu Ali al-Hasan ibn al-Haytham", MacTutor History of Mathematics Archive, University of St Andrews
  4. ^ Pollack, Paul; Shevelev, Vladimir (2012), "On perfect and near-perfect numbers", Journal of Number Theory, 132 (12): 3037–3046, arXiv:1011.6160, doi:10.1016/j.jnt.2012.06.008, MR 2965207, S2CID 13607242
  5. ^ Euler, Leonhard (1849), "De numeris amicibilibus" [On amicable numbers], Commentationes arithmeticae (in Latin), vol. 2, pp. 627–636. Originally read to the Berlin Academy on February 23, 1747, and published posthumously. See in particular section 8, p. 88.
  6. ^ Cohen, Graeme L. (March 1981), "Even perfect numbers", The Mathematical Gazette, 65 (431): 28–30, doi:10.2307/3617930, JSTOR 3617930, S2CID 125868737
  7. ^ Wiedijk, Freek, Formalizing 100 Theorems, Radboud University Institute for Computing and Information Sciences, retrieved 2024-02-20
  8. ^ a b Gerstein, Larry (2012), Introduction to Mathematical Structures and Proofs, Undergraduate Texts in Mathematics, Springer, Theorem 6.94, p. 339, ISBN 978-1-4614-4265-3.
  9. ^ a b Caldwell, Chris K., "A proof that all even perfect numbers are a power of two times a Mersenne prime", Prime Pages, retrieved 2014-12-02.
  10. ^ a b Travaglini, Giancarlo (2014), Number Theory, Fourier Analysis and Geometric Discrepancy, London Mathematical Society Student Texts, vol. 81, Cambridge University Press, pp. 26–27, ISBN 978-1-107-04403-6.

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

Falco eleonorae Falco eleonorae Status konservasiRisiko rendahIUCN22696442 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoFalconiformesFamiliFalconidaeGenusFalcoSpesiesFalco eleonorae Giuseppe Gené, 1839 Tata namaDinamakan berdasarkanEleanor of Arborea (en) DistribusiMigration routes of Eleonora's falcon lbs Falco eleonorae adalah falkon berukuran sedang. Itu milik kelompok hobi, sejumlah elang serupa yang sering dianggap sebagai subgenus Hypotriorchis. Elang jelaga kadang-kadang dianggap s…

Beo Selandia Baru Selandia Baru kaka, Pulau Utara subspesies(Nestor meridionalis septentrionalis)di Kebun Binatang Auckland, Selandia Baru Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Psittaciformes Superfamili: StrigopoideaBonaparte, 1849 Famili: StrigopidaeBonaparte, 1849 Beo Selandia Baru keluarga (Strigopidae)[1] terdiri dari tiga genera dari burung beo yaitu, nestor, Strigops dan fosil Nelepsittacus.[2][3] Genus Nestor terdiri dari kea, kak…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bellwood Subdivision – news · newspapers · books · scholar · JSTOR (August 2021) (Learn how and when to remove this template message) CSX railroad line in Virginia vteBellwood Subdivision Legend CSX Richmond Terminal Subdivision CSX A Line (North End Subdivision) …

EnninPatung Ennin.Lahir793 atau 794 MasehiMeninggal864 MasehiPekerjaanbiksu, filsuf, sarjana, penjelajah, dan pendeta Ennin (圓仁 atau 円仁code: ja is deprecated , 793 Masehi [1] atau 794 – 864), juga dikenal di Jepang dengan nama anumerta-nya, Jikaku Daishi (慈覺大師), adalah seorang pendeta dari aliran Tendai. Kelahiran dan asal mula Bagian dari sebuah serial tentangAgama Buddha di Jepang Aliran Jōjitsu Hosso Sanron Kegon Ritsu Kusha Tendai Shingon Tanah Murni Zen Nichiren P…

Tentara Panzer ke-22. Panzerarmeecode: de is deprecated InsigniaAktif5 Juni 1940 – 8 Mei 1945Negara Nazi GermanyCabangTentara WehrmachtTipe unitPanzerPeranPeperangan lapis bajaJumlah personelAngkatan BersenjataPertempuranPerang Dunia II Front Timur TokohTokoh berjasaHeinz Guderian Tentara Panzer ke-2 (Jerman: 2. Panzerarmeecode: de is deprecated ) adalah formasi kendaraan lapis baja Jerman Nazi selama Perang Dunia II yang dibentuk dari Grup Panzer ke-2 pada tanggal 5 Oktober 1941. Grup Pa…

يوسيب إيليتشيتش   معلومات شخصية الاسم الكامل يوسيب إيليتشيتش الميلاد 29 يناير 1988 (العمر 36 سنة)بريجيدور، جمهورية يوغوسلافيا الاشتراكية الاتحادية الطول 1.90 م (6 قدم 3 بوصة) مركز اللعب وسط مهاجم الجنسية سلوفينيا  معلومات النادي النادي الحالي نادي فيورينتينا الرقم 72 م…

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Handley, Fort Worth, Texas – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) A line of businesses in what once was the downtown area of Handley, Tx Handley was a town in Tarrant County, Texas, United States. It is loc…

Austrian film director Patric ChihaChiha in 2017Born (1975-03-03) 3 March 1975 (age 49)[1]Vienna, Austria[2]OccupationsFilm directorscreenwritereditorYears active2000–present Patric Chiha (born 3 March 1975) is an Austrian film director, screenwriter and film editor of Hungarian and Lebanese origin.[2][3] After directing several short films and documentaries, his first feature film, Domain (2009), premiered at the 2009 Venice Film Festival.[2] …

Pour des articles plus généraux, voir Lesbianisme et Histoire LGBT. Articles connexes : Histoire de l'homosexualité, Histoire de la bisexualité et Histoire de la transidentité.L'histoire des lesbiennes désigne à la fois l'histoire des femmes ayant des relations affectives et sexuelles entre elles, mais aussi l'histoire d'une identité sociale et culturelle qui n'est pas réduite à une simple homosexualité féminine. Évoluant dans des sociétés lesbophobes qui les répriment, les …

Papa Sergio II102º papa della Chiesa cattolicaElezione25 gennaio 844 Insediamento27 gennaio 844 Fine pontificato27 gennaio 847(3 anni e 2 giorni) Predecessorepapa Gregorio IV Successorepapa Leone IV  NascitaRoma, 790 circa MorteRoma, 27 gennaio 847 SepolturaAntica basilica di San Pietro in Vaticano Manuale Sergio II (Roma, 790 circa – Roma, 27 gennaio 847) è stato il 102º papa della Chiesa cattolica dal gennaio 844 fino alla sua morte. Indice 1 Biografia 1.1 Origini e carrier…

Restaurant in Manhattan, New York Not to be confused with Sardi or Sardis. 40°45′28.48″N 73°59′15.12″W / 40.7579111°N 73.9875333°W / 40.7579111; -73.9875333 Sardi'sSardi's entrance: rows of caricatures are visible through the upstairs windowsRestaurant informationEstablishedMarch 5, 1927Owner(s)Max KlimaviciusPrevious owner(s)Vincent Sardi Sr. Vincent Sardi Jr.Food typeContinentalStreet address234 West 44th Street (between Broadway and Eighth Avenue)CityNew Yo…

Stratovolcano at the western end of Java Mount PulosariPulasari[1][2]Poelasari[1]Batuwara[3][4]Highest pointElevation1,324 m (4,344 ft)[1]Coordinates6°20′35″S 105°58′41″E / 6.343°S 105.978°E / -6.343; 105.978[1]GeographyMount PulosariMount Pulosari (Java Island)Show map of JavaMount PulosariMount Pulosari (Indonesia)Show map of Indonesia CountryIndonesia[1]IslandJava[1]Provi…

City in California, United States City in California, United StatesGrand Terrace, CaliforniaCityCity of Grand Terrace images from top, left to right - Grand Terrace City Hall, Blue Mountain Trail, Northeast City Entrance, Historical Plaque, Veterans Wall of Freedom SealLocation of Grand Terrace in San Bernardino County, California.Grand Terrace, CaliforniaLocation in the United StatesCoordinates: 34°02′02″N 117°18′49″W / 34.03389°N 117.31361°W / 34.03389; -117…

v · mArmées françaises Révolution française Armée des Alpes composition Armée d'Allemagne Armée d'Angleterre Armée des Ardennes Armée de Belgique Armée du Centre Armée des côtes de Brest Armée des côtes de Cherbourg Armée des côtes de La Rochelle Armée du Danube Armée de Hollande Armée de l'Intérieur Armée d'Italie composition Armée de Mayence Armée du Midi Armée de la Moselle composition Armée de Naples Armée du Nord composition Armée d’Orient Armée de l'Oues…

Magliano de' Marsicomune Magliano de' Marsi – VedutaVeduta di Magliano de' Marsi LocalizzazioneStato Italia Regione Abruzzo Provincia L'Aquila AmministrazioneSindacoPasqualino Di Cristofano (Lista civica Benvenuto futuro) dal 22-9-2020 TerritorioCoordinate42°05′33″N 13°21′53″E / 42.0925°N 13.364722°E42.0925; 13.364722 (Magliano de' Marsi)Coordinate: 42°05′33″N 13°21′53″E / 42.0925°N 13.364722°E42.0925; 13.36472…

Bilateral relationsChina-Ghana relations China Ghana China-Ghanaian relations refer to the current and historical relationship between the Republic of Ghana and the People's Republic of China (PRC). History Zhou Enlai with President Nkrumah on his visit to Ghana in April 1964 Huang Hua in 1961 became PRC's first ambassador to Ghana China and Ghana established diplomatic relations on July 5, 1960.[1]: 345  Since then Ghana has provided substantial diplomatic support to the…

Second issue of The SeerFebruary, 1853. The Seer was an official periodical of the Church of Jesus Christ of Latter-day Saints (LDS Church) which first appeared in 1853 and was published throughout 1854.[1] History After the LDS Church publicly acknowledged that it was teaching and practicing plural marriage at its September 1852 conference, LDS Church president Brigham Young dispatched apostle Orson Pratt to Washington, D.C., where he was asked to publish an apologetic magazine targeted…

Type of chromatography This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gas chromatography – news · newspapers · books · scholar · JSTOR (November 2020) (Learn how and when to remove this message) Gas chromatographyA gas chromatograph with a headspace samplerAcronymGCClassificationChromatographyAnalytes Organic …

For the sports journalist and writer, see Steven Krasner. Stephen KrasnerDirector of Policy PlanningIn officeFebruary 4, 2005 – April 20, 2007PresidentGeorge W. BushPreceded byMitchell B. ReissSucceeded byDavid F. Gordon Personal detailsBornStephen David Krasner (1942-02-15) February 15, 1942 (age 82)Alma materCornell University (BA)Columbia University (MA)Harvard University (PhD) Stephen David Krasner (born February 15, 1942) is an American academic and former diplomat. Krasner …

Kembali kehalaman sebelumnya