Share to: share facebook share twitter share wa share telegram print page

Five color theorem

A Five-Color Map

The five color theorem is a result from graph theory that given a plane separated into regions, such as a political map of the countries of the world, the regions may be colored using no more than five colors in such a way that no two adjacent regions receive the same color.

The five color theorem is implied by the stronger four color theorem, but is considerably easier to prove. It was based on a failed attempt at the four color proof by Alfred Kempe in 1879. Percy John Heawood found an error 11 years later, and proved the five color theorem based on Kempe's work.

Outline of the proof by contradiction

First of all, one associates a simple planar graph to the given map, namely one puts a vertex in each region of the map, then connects two vertices with an edge if and only if the corresponding regions share a common border. The problem is then translated into a graph coloring problem: one has to paint the vertices of the graph so that no edge has endpoints of the same color.

Because is a simple planar, i.e. it may be embedded in the plane without intersecting edges, and it does not have two vertices sharing more than one edge, and it does not have loops, then it can be shown (using the Euler characteristic of the plane) that it must have a vertex shared by at most five edges. (Note: This is the only place where the five-color condition is used in the proof. If this technique is used to prove the four-color theorem, it will fail on this step. In fact, an icosahedral graph is 5-regular and planar, and thus does not have a vertex shared by at most four edges.) Find such a vertex, and call it .

Now remove from . The graph obtained this way has one fewer vertex than , so we can assume by induction that it can be colored with only five colors. If the coloring did not use all five colors on the five neighboring vertices of , it can be colored in with a color not used by the neighbors. So now look at those five vertices , , , , that were adjacent to in cyclic order (which depends on how we write G). So we can assume that , , , , are colored with colors 1, 2, 3, 4, 5 respectively.

Now consider the subgraph of consisting of the vertices that are colored with colors 1 and 3 only and the edges connecting them. To be clear, each edge connects a color 1 vertex to a color 3 vertex (this is called a Kempe chain). If and lie in different connected components of , we can swap the 1 and 3 colors on the component containing without affecting the coloring of the rest of . This frees color 1 for completing the task. If on the contrary and lie in the same connected component of , we can find a path in joining them that consists of only color 1 and 3 vertices.

Now turn to the subgraph of consisting of the vertices that are colored with colors 2 and 4 only and the edges connecting them, and apply the same arguments as before. Then either we are able to reverse the 2-4 coloration on the subgraph of containing and paint color 2, or we can connect and with a path that consists of only color 2 and 4 vertices. Such a path would intersect the 1-3 colored path we constructed before since through were in cyclic order. This is clearly absurd as it contradicts the planarity of the graph.

So can in fact be five-colored, contrary to the initial presumption.

Linear time five-coloring algorithm

Multiple authors, beginning with Lipton and Miller in 1978, have studied efficient algorithms for five-coloring planar graphs. The algorithm of Lipton and Miller took time ,[1] but subsequent researchers reduced the time bound to .[2][3][4][5][6] The version below is from a 1996 paper by Robertson, Sanders, Seymour, and Thomas, which describes it briefly in connection with a slower -time algorithm for four-coloring.[7] The algorithm as described here operates on multigraphs and relies on the ability to have multiple copies of edges between a single pair of vertices. It is based on Wernicke's theorem, which states the following:

Wernicke's theorem: Assume G is planar, nonempty, has no faces bounded by two edges, and has minimum degree 5. Then G has a vertex of degree 5 which is adjacent to a vertex of degree at most 6.

We will use a representation of the graph in which each vertex maintains a circular linked list of adjacent vertices, in clockwise planar order.

In concept, the algorithm is recursive, reducing the graph to a smaller graph with one less vertex, five-coloring that graph, and then using that coloring to determine a coloring for the larger graph in constant time. In practice, rather than maintain an explicit graph representation for each reduced graph, we will remove vertices from the graph as we go, adding them to a stack, then color them as we pop them back off the stack at the end. We will maintain three stacks:

  • S4: Contains all remaining vertices with either degree at most four, or degree five and at most four distinct adjacent vertices (due to multiple edges).
  • S5: Contains all remaining vertices that have degree five, five distinct adjacent vertices, and at least one adjacent vertex with degree at most six.
  • Sd: Contains all vertices deleted from the graph so far, in the order that they were deleted.

The algorithm works as follows:

  1. In the first step, we collapse all multiple edges to single edges, so that the graph is simple. Next, we iterate over the vertices of the graph, pushing any vertex matching the conditions for S4 or S5 onto the appropriate stack.
  2. Next, as long as S4 is non-empty, we pop v from S4 and delete v from the graph, pushing it onto Sd, along with a list of its neighbors at this point in time. We check each former neighbor of v, pushing it onto S4 or S5 if it now meets the necessary conditions.
  3. When S4 becomes empty, we know that our graph has minimum degree five. If the graph is empty, we go to the final step 5 below. Otherwise, Wernicke's Theorem tells us that S5 is nonempty. Pop v off S5, delete it from the graph, and let v1, v2, v3, v4, v5 be the former neighbors of v in clockwise planar order, where v1 is the neighbor of degree at most 6. We check if v1 is adjacent to v3 (which we can do in constant time due to the degree of v1). There are two cases:
    1. If v1 is not adjacent to v3, we can merge these two vertices into a single vertex. To do this, we remove v from both circular adjacency lists, and then splice the two lists together into one list at the point where v was formerly found. Provided that v maintains a reference to its position in each list, this can be done in constant time. It's possible that this might create faces bounded by two edges at the two points where the lists are spliced together; we delete one edge from any such faces. After doing this, we push v3 onto Sd, along with a note that v1 is the vertex that it was merged with. Any vertices affected by the merge are added or removed from the stacks as appropriate.
    2. Otherwise, v2 lies inside the face outlined by v, v1, and v3. Consequently, v2 cannot be adjacent to v4, which lies outside this face. We merge v2 and v4 in the same manner as v1 and v3 above.
  4. Go to step 2.
  5. At this point S4, S5, and the graph are empty. We pop vertices off Sd. If the vertex were merged with another vertex in step 3, the vertex that it was merged with will already have been colored, and we assign it the same color. This is valid because we only merged vertices that were not adjacent in the original graph. If we had removed it in step 2 because it had at most 4 adjacent vertices, all of its neighbors at the time of its removal will have already been colored, and we can simply assign it a color that none of its neighbors is using.

Alternate proof

Kainen (1974) provides a simplified proof of the five color theorem, based on the non-planarity of K6 (the complete graph with 6 vertices) and graph minors. This proof generalizes to graphs that can be made planar by deleting 2 edges.[8]

See also

References

  1. ^ Lipton, Richard J.; Miller, Raymond E. (1978), "A batching method for coloring planar graphs", Information Processing Letters, 7 (4): 185–188, doi:10.1016/0020-0190(78)90065-0, MR 0497394
  2. ^ Chiba, Norishige; Nishizeki, Takao; Saito, Nobuji (1981), "A linear 5-coloring algorithm of planar graphs", Journal of Algorithms, 2 (4): 317–327, doi:10.1016/0196-6774(81)90031-6, MR 0640516
  3. ^ Matula, David; Shiloach, Yossi; Tarjan, Robert (November 1980), Two linear-time algorithms for five-coloring a planar graph (PDF), Tech. Report STAN-CS-80-830, Stanford University
  4. ^ Frederickson, Greg N. (1984), "On linear-time algorithms for five-coloring planar graphs", Information Processing Letters, 19 (5): 219–224, CiteSeerX 10.1.1.158.5812, doi:10.1016/0020-0190(84)90056-5, MR 0777802
  5. ^ Williams, M. H. (1985), "A linear algorithm for colouring planar graphs with five colours", The Computer Journal, 28 (1): 78–81, doi:10.1093/comjnl/28.1.78, MR 0786929
  6. ^ Hagerup, Torben; Chrobak, Marek; Diks, Krzysztof (1989), "Optimal parallel 5-colouring of planar graphs", SIAM Journal on Computing, 18 (2): 288–300, doi:10.1137/0218020, MR 0986668
  7. ^ Robertson, Neil; Sanders, Daniel P.; Seymour, Paul; Thomas, Robin (1996), "Efficiently four-coloring planar graphs" (PDF), Proc. 28th ACM Symposium on Theory of Computing (STOC), New York: ACM Press.
  8. ^ Kainen, Paul C. (September 1974). "A Generalization of the 5-Color Theorem" (PDF). Proceedings of the American Mathematical Society. 45 (3): 450–452. doi:10.2307/2039977. JSTOR 2039977.

Further reading

  • Heawood, P. J. (1890), "Map-Colour Theorems", Quarterly Journal of Mathematics, Oxford, vol. 24, pp. 332–338
Read more information:

Peta Thuillières. Thuillières merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvelle Anglemont Anould Aouze Arches Archettes Aroffe Arrentès-de-Corcieux Attignéville Attigny Aulnois Aumontzey Autigny-la-Tour Autreville Autrey Auzainvilliers Avillers Avrainville Avranville Aydoilles Badménil-au…

Ini adalah nama Batak Toba, marganya adalah Nababan. Arifin Rudi Nababan Ketua DPRD Tapanuli UtaraPetahanaMulai menjabat 30 September 2019PresidenJoko WidodoGubernurEdy RahmayadiBupatiNikson NababanPerolehan Suara2.045 suara (2019)Daerah pemilihanTapanuli Utara 4 Informasi pribadiLahir20 Mei 1973 (umur 50)Partai politikPDI-PSuami/istriEmmy PasaribuAnak2ProfesiPolitisiSunting kotak info • L • B Arifin Rudi Nababan (lahir 20 Mei 1973) adalah seorang politikus Indonesia. Arif…

Pinjal Periode Middle Jurassic–Recent[1] PreЄ Є O S D C P T J K Pg N Siphonaptera Gambar kutu, dilihat melalui Scanning electron microscope (SEM)TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaSuperordoEndopterygotaOrdoSiphonaptera Latreille, 1825 Tata namaSinonim taksonAphanipteraUpaordoCeratophyllomorpha Hystrichopsyllomorpha Pulicomorpha Pygiopsyllomorphalbs Pinjal adalah serangga yang termasuk ordo Siphonaptera.[2] Pinjal merupakan serangga parasit yang umumnya ditemu…

Rolf Hochhuth, 2009 Rolf Hochhuth (lahir 1 April 1931) adalah seorang penulis dan pembuat sandiwara asal Jerman. Ia dikenal karena membuat drama tahun 1963 The Deputy, yang mengisahkan penghirauan Paus Pius XII terhadap penindasan Yahudi oleh Hitler,[1] dan ia masih menjadi figur kontroversial karena sandiwara-sandiwara buatsannya dan komentar-komentar publik lainnya dan atas pembelaannya pada tahun 2015 terhadap penyangkal Holokaus David Irving. Referensi ^ http://catholiceducation.org/…

Electro Velvet Informations générales Pays d'origine Royaume-Uni Genre musical Electro swing Années actives Depuis 2015 Composition du groupe Membres Alex LarkeBianca Nicholas modifier Electro Velvet est un groupe de musique britannique d'electro swing composé d'Alex Larke et Bianca Nicholas. Le 7 mars 2015, ils sont choisis en interne pour représenter le Royaume-Uni au Concours Eurovision de la chanson 2015 à Vienne, en Autriche avec la chanson Still in Love with You[1]. Ils sont qualifi…

Dixit memfilmkan Dance Deewane pada 2018 Madhuri Dixit adalah seorang pemeran India yang dikenal atas karyanya dalam perfilman Bollywood. Ia memulai debutnya dengan berperan sebagai seorang mempelai muda dalam film 1984 Abodh.[1] Dixit tampil dalam beberapa film sepanjang dua tahun berikutnya, meliputi film drama Awara Baap (1985) dan Swati (1986), walaupun tak ada yang meraih sambutan besar.[1] Peran terobosannya datang pada 1988 dengan film cerita seru garapan N. Chandra Tezaab…

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahka…

Vincent van Gogh, Rumah Kuning, 1888, Museum Van Gogh, Amsterdam (F464) Dékorasi untuk Rumah Kuning adalah proyek utama karya Vincent van Gogh yang berfokus di Arles, dari Agustus 1888 sampai sehari sebelum Natal. Dekorasi ini memiliki bentuk atau ukuran yang tak ditentukan pada masa sebelumnya; gagasan Dekorasi utama berkembang secara bertahap Referensi Roland Dorn (1990). Décoration: Vincent van Goghs Werkreihe für das Gelbe Haus in Arles. Georg Olms Verlag. ISBN 978-3-487-09098-6.…

Atletik padaPekan Olahraga Nasional 2016 Lintasan 100 m putra putri 200 m putra putri 400 m putra putri 800 m putra putri 1500 m putra putri 5000 m putra putri 10.000 m putra putri 100 m gawang putri 110 m gawang putra 400 m gawang putra putri 3000 m h'rintang putra putri 10.000 m jalan cepat putra 4×100 m estafet putra putri 4×400 m estafet putra putri Jalan raya Maraton putra putri 20 km jalan cepat putra putri Lapangan Lompat tinggi putra putri Lompat galah putra putri Lompat jauh putra put…

Bedir Khan BegBerkuasa1821-1847PenerusIzz ad-Din Shir BegKelahiran1803 (Cizre, Şirnak-Kurdistan)Kematian1869WangsaBokhtiAyahAbdullah Beg Bedir Khan Beg (Kurmanji: Bedirxan Beg, Turki: Bedirhan Bey; 1803–1869) adalah Mîr orang Kurdi terakhir[1][2] dan mütesellim dari Emirat Botan.[3] Ia merupakan kepala keturunan keluarga Rozhaki yang berkedudukan di kastil Bitlis kuno dan keturunan dari Sharafkhan Bidlisi, Bedir Khan lahir di Cizre (sekarang di Turki). Ia menjadi Mir…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Garasi mobil – berita · surat kabar · buku · cendekiawan · JSTOR Bentuk garasi untuk dua mobil Garasi adalah tempat untuk menyimpan mobil agar terhindar dari pencurian ataupun untuk melindungi mobil te…

KaiSampul versi digital dan Flipbook.Album mini karya KaiDirilis30 November 2020 (2020-11-30)Direkam2020GenreR&BDurasi17:55BahasaKoreaLabelSM EntertainmentSingel dalam album Kai MmmhDirilis: 30 November 2020 Video musikMmmh di YouTube Kai (ditulis sebagai KAI (开)) adalah album debut dari penyanyi asal Korea Selatan Kai. Album ini dirilis pada tanggal 30 November 2020 oleh SM Entertainment. Album ini terdiri dari enam lagu termasuk singel utama, Mmmh.[1][2] Album fi…

Meskipun tidak secara resmi didedikasikan untuk Ratu Elizabeth, Bishops' Bible memuat potret ratu pada halaman judul. Edisi quarto 1569 menunjukkan Elizabeth disertai oleh gambar perempuan personifikasi dari Keadilan, Kasih, Ketabahan, dan kehati-hatian. Bishops' Bible adalah terjemahan Alkitab ke dalam bahasa Inggris yang diproduksi di bawah wewenang Gereja Inggris pada tahun 1568. Secara substansial direvisi pada 1572, dan edisi 1602 edisi diresepkan sebagai teks dasar untuk Alkitab Versi Raja…

John Frederick KensettJohn Frederick Kensett (David Johnson, 1874)Lahir(1816-03-22)22 Maret 1816Cheshire, ConnecticutMeninggal14 Desember 1872(1872-12-14) (umur 56)Kota New YorkKebangsaanAmerikaDikenal atasLukisan, Lukisan lanskap, EngravingGerakan politikLuminism John Frederick Kensett (22 Maret 1816 – 14 Desember 1872) adalah pelukis lanskap dan pengukir lahir di Cheshire, Connecticut, Amerika Serikat. Sebagai anggota generasi kedua seniman Hudson River School, karya khas …

Geroldsgrün Lambang kebesaranLetak Geroldsgrün di Hof NegaraJermanNegara bagianBayernWilayahOberfrankenKreisHofSubdivisions13 ortsteilPemerintahan • MayorHelmut Oelschlegel (SPD)Luas • Total15,57 km2 (601 sq mi)Ketinggian606 m (1,988 ft)Populasi (2013-12-31)[1] • Total2.916 • Kepadatan1,9/km2 (4,9/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos95179Kode area telepon09288 in Teilen 09267Pelat kendaraanHOSitu…

Perancang Ermano Daelli Ermanno Scervino ialah sebuah brand Italia yang mengeluarkan produk dan koleksinya untuk perempuan.[1] Pertama kali brand ini didirikan oleh Ermanno Scervino sekitar tahun 1990an dimana debut pertamanya diadakan di Milan pada tahun 2003.[2] Koleksi pakaian wanita pertama kali dibuat pada tahun 1999 sedangkan untuk pakaian pria dikeluarkan 2002 yang mana diperagakan pada tahun 2005 sebagai tamu kehormatan di Pitti Immagine.[2] pada tahun 2005, kolek…

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Dewi Sekardadu – berita · surat kabar · b…

Advanced Info Service Public Company LimitedJenisPublikKode emitenSET: ADVANCIndustriTelekomunikasiDidirikan24 April 1985; 38 tahun lalu (24 April 1985)[1]PendiriThaksin ShinawatraKantorpusatPhaya Thai, Bangkok, Thailand[2]Wilayah operasiThailandTokohkunciChairman: Vithit Leenutaphong, CEO: Somchai LertsutiwongPendapatan 180.89 miliar baht (2019)[3]Laba operasi 37.40 miliar baht (2019)[3]Laba bersih 31.19 miliar baht (2019)[3]Total aset 289.67 miliar …

تفجير حي الراشدين (أبريل 2017) جزء من الحرب الأهلية السورية المعلومات البلد سوريا  الموقع حي الراشدين، محافظة حلب،  سوريا الإحداثيات 36°10′07″N 37°04′10″E / 36.168521388889°N 37.069416111111°E / 36.168521388889; 37.069416111111  التاريخ 15 نيسان/أبريل 2017 الهدف نازحين من أهالي الفوعة و‌كفريا …

Jim ClarkLahir(1936-03-04)4 Maret 1936Meninggal7 April 1968(1968-04-07) (umur 32)Karier Kejuaraan Dunia Formula SatuKebangsaan InggrisTahun aktif1960 - 1968TimLotusJumlah lomba73 (72 start)Juara dunia2 (1963, 1965)Menang25Podium32Total poin255 (274)Posisi pole33Lap tercepat28Lomba pertamaGrand Prix Belanda 1960Menang pertamaGrand Prix Belgia 1962Menang terakhirGrand Prix Afrika Selatan 1968Lomba terakhirGrand Prix Afrika Selatan 1968 James Clark Jr. OBE, atau biasa dikenal dengan nama Jim C…

Kembali kehalaman sebelumnya