Generalization of the Meijer G-function and the Fox–Wright function
In mathematics, the Fox H-function H (x ) is a generalization of the Meijer G-function and the Fox–Wright function introduced by Charles Fox (1961 ).
It is defined by a Mellin–Barnes integral
H
p
,
q
m
,
n
[
z
|
(
a
1
,
A
1
)
(
a
2
,
A
2
)
…
(
a
p
,
A
p
)
(
b
1
,
B
1
)
(
b
2
,
B
2
)
…
(
b
q
,
B
q
)
]
=
1
2
π
i
∫
L
∏
j
=
1
m
Γ
(
b
j
+
B
j
s
)
∏
j
=
1
n
Γ
(
1
−
a
j
−
A
j
s
)
∏
j
=
m
+
1
q
Γ
(
1
−
b
j
−
B
j
s
)
∏
j
=
n
+
1
p
Γ
(
a
j
+
A
j
s
)
z
−
s
d
s
,
{\displaystyle H_{p,q}^{\,m,n}\!\left[z\left|{\begin{matrix}(a_{1},A_{1})&(a_{2},A_{2})&\ldots &(a_{p},A_{p})\\(b_{1},B_{1})&(b_{2},B_{2})&\ldots &(b_{q},B_{q})\end{matrix}}\right.\right]={\frac {1}{2\pi i}}\int _{L}{\frac {\prod _{j=1}^{m}\Gamma (b_{j}+B_{j}s)\,\prod _{j=1}^{n}\Gamma (1-a_{j}-A_{j}s)}{\prod _{j=m+1}^{q}\Gamma (1-b_{j}-B_{j}s)\,\prod _{j=n+1}^{p}\Gamma (a_{j}+A_{j}s)}}z^{-s}\,ds,}
where L is a certain contour separating the poles of the two factors in the numerator.
Plot of the Fox H function H((((a 1,α 1),...,(a n,α n)),((a n+1,α n+1),...,(a p,α p)),(((b 1,β 1),...,(b m,β m)),in ((b m+1,β m+1),...,(b q,β q))),z) with H(((),()),(((-1,1 / 2 )),()),z)
Relation to other functions
Lambert W-function
A relation of the Fox H-Function to the -1 branch of the Lambert W-function is given by
W
−
1
(
−
α
⋅
z
)
¯
=
{
lim
β
→
α
−
[
α
2
⋅
(
(
α
−
β
)
⋅
z
)
α
β
β
⋅
H
1
,
2
1
,
1
(
(
α
+
β
β
,
α
β
)
(
0
,
1
)
,
(
−
α
β
,
α
−
β
β
)
∣
−
(
(
α
−
β
)
⋅
z
)
α
β
−
1
)
]
,
for
|
z
|
<
1
e
|
α
|
lim
β
→
α
−
[
α
2
⋅
(
(
α
−
β
)
⋅
z
)
−
α
β
β
⋅
H
2
,
1
1
,
1
(
(
1
,
1
)
,
(
β
−
α
β
,
α
−
β
β
)
(
−
α
β
,
α
β
)
∣
−
(
(
α
−
β
)
⋅
z
)
1
−
α
β
)
]
,
otherwise
{\displaystyle {\overline {\operatorname {W} _{-1}\left(-\alpha \cdot z\right)}}={\begin{cases}\lim _{\beta \to \alpha ^{-}}\left[{\frac {\alpha ^{2}\cdot \left(\left(\alpha -\beta \right)\cdot z\right)^{\frac {\alpha }{\beta }}}{\beta }}\cdot \operatorname {H} _{1,\,2}^{1,\,1}\left({\begin{matrix}\left({\frac {\alpha +\beta }{\beta }},\,{\frac {\alpha }{\beta }}\right)\\\left(0,\,1\right),\,\left(-{\frac {\alpha }{\beta }},\,{\frac {\alpha -\beta }{\beta }}\right)\\\end{matrix}}\mid -\left(\left(\alpha -\beta \right)\cdot z\right)^{{\frac {\alpha }{\beta }}-1}\right)\right],\,{\text{for}}\left|z\right|<{\frac {1}{e\left|\alpha \right|}}\\\lim _{\beta \to \alpha ^{-}}\left[{\frac {\alpha ^{2}\cdot \left(\left(\alpha -\beta \right)\cdot z\right)^{-{\frac {\alpha }{\beta }}}}{\beta }}\cdot \operatorname {H} _{2,\,1}^{1,\,1}\left({\begin{matrix}\left(1,\,1\right),\,\left({\frac {\beta -\alpha }{\beta }},\,{\frac {\alpha -\beta }{\beta }}\right)\\\left(-{\frac {\alpha }{\beta }},\,{\frac {\alpha }{\beta }}\right)\\\end{matrix}}\mid -\left(\left(\alpha -\beta \right)\cdot z\right)^{1-{\frac {\alpha }{\beta }}}\right)\right],\,{\text{otherwise}}\\\end{cases}}}
where
z
¯
{\displaystyle {\overline {z}}}
is the complex conjugate of
z
{\displaystyle z}
.[ 1]
Meijer G-function
Compare to the Meijer G-function
G
p
,
q
m
,
n
(
a
1
,
…
,
a
p
b
1
,
…
,
b
q
|
z
)
=
1
2
π
i
∫
L
∏
j
=
1
m
Γ
(
b
j
−
s
)
∏
j
=
1
n
Γ
(
1
−
a
j
+
s
)
∏
j
=
m
+
1
q
Γ
(
1
−
b
j
+
s
)
∏
j
=
n
+
1
p
Γ
(
a
j
−
s
)
z
s
d
s
.
{\displaystyle G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}a_{1},\dots ,a_{p}\\b_{1},\dots ,b_{q}\end{matrix}}\;\right|\,z\right)={\frac {1}{2\pi i}}\int _{L}{\frac {\prod _{j=1}^{m}\Gamma (b_{j}-s)\,\prod _{j=1}^{n}\Gamma (1-a_{j}+s)}{\prod _{j=m+1}^{q}\Gamma (1-b_{j}+s)\,\prod _{j=n+1}^{p}\Gamma (a_{j}-s)}}\,z^{s}\,ds.}
The special case for which the Fox H reduces to the Meijer G is A j = B k = C , C > 0 for j = 1...p and k = 1...q :[ 2]
H
p
,
q
m
,
n
[
z
|
(
a
1
,
C
)
(
a
2
,
C
)
…
(
a
p
,
C
)
(
b
1
,
C
)
(
b
2
,
C
)
…
(
b
q
,
C
)
]
=
1
C
G
p
,
q
m
,
n
(
a
1
,
…
,
a
p
b
1
,
…
,
b
q
|
z
1
/
C
)
.
{\displaystyle H_{p,q}^{\,m,n}\!\left[z\left|{\begin{matrix}(a_{1},C)&(a_{2},C)&\ldots &(a_{p},C)\\(b_{1},C)&(b_{2},C)&\ldots &(b_{q},C)\end{matrix}}\right.\right]={\frac {1}{C}}G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}a_{1},\dots ,a_{p}\\b_{1},\dots ,b_{q}\end{matrix}}\;\right|\,z^{1/C}\right).}
A generalization of the Fox H-function was given by Ram Kishore Saxena .[ 3] [ 4] A further generalization of this function, useful in physics and statistics, was provided by A.M. Mathai and Ram Kishore Saxena .[ 5] [ 6]
References
Fox, Charles (1961), "The G and H functions as symmetrical Fourier kernels", Transactions of the American Mathematical Society , 98 (3): 395– 429, doi :10.2307/1993339 , ISSN 0002-9947 , JSTOR 1993339 , MR 0131578
Innayat-Hussain, AA (1987a), "New properties of hypergeometric series derivable from Feynman integrals. I: Transformation and reduction formulae", J. Phys. A: Math. Gen. , 20 (13): 4109– 4117, Bibcode :1987JPhA...20.4109I , doi :10.1088/0305-4470/20/13/019
Innayat-Hussain, AA (1987b), "New properties of hypergeometric series derivable from Feynman integrals. II: A generalization of the H-function", J. Phys. A: Math. Gen. , 20 (13): 4119– 4128, Bibcode :1987JPhA...20.4119I , doi :10.1088/0305-4470/20/13/020
Kilbas, Anatoly A. (2004), H-Transforms: Theory and Applications , CRC Press, ISBN 978-0415299169
Mathai, A. M.; Saxena, Ram Kishore (1978), The H-function with applications in statistics and other disciplines , Halsted Press [John Wiley & Sons], New York-London-Sidney, ISBN 978-0-470-26380-8 , MR 0513025
Mathai, A. M.; Saxena, Ram Kishore; Haubold, Hans J. (2010), The H-function , Berlin, New York: Springer-Verlag , ISBN 978-1-4419-0915-2 , MR 2562766
Rathie, Arjun K. (1997), "A new generalization of generalized hypergeometric function", Le Matematiche , LII : 297– 310 .
Srivastava, H. M.; Gupta, K. C.; Goyal, S. P. (1982), The H-functions of one and two variables , New Delhi: South Asian Publishers Pvt. Ltd., MR 0691138
Srivastava, H. M.; Manocha, H. L. (1984). A treatise on generating functions . E. Horwood. ISBN 0-470-20010-3 .
External links