Share to: share facebook share twitter share wa share telegram print page

Hausdorff space

Separation axioms
in topological spaces
Kolmogorov classification
T0 (Kolmogorov)
T1 (Fréchet)
T2 (Hausdorff)
T2½(Urysohn)
completely T2 (completely Hausdorff)
T3 (regular Hausdorff)
T(Tychonoff)
T4 (normal Hausdorff)
T5 (completely normal
 Hausdorff)
T6 (perfectly normal
 Hausdorff)

In topology and related branches of mathematics, a Hausdorff space (/ˈhsdɔːrf/ HOWSS-dorf, /ˈhzdɔːrf/ HOWZ-dorf[1]), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each that are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.[2]

Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom.

Definitions

The points x and y, separated by their respective neighbourhoods U and V.

Points and in a topological space can be separated by neighbourhoods if there exists a neighbourhood of and a neighbourhood of such that and are disjoint . is a Hausdorff space if any two distinct points in are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff spaces are also called T2 spaces. The name separated space is also used.

A related, but weaker, notion is that of a preregular space. is a preregular space if any two topologically distinguishable points can be separated by disjoint neighbourhoods. A preregular space is also called an R1 space.

The relationship between these two conditions is as follows. A topological space is Hausdorff if and only if it is both preregular (i.e. topologically distinguishable points are separated by neighbourhoods) and Kolmogorov (i.e. distinct points are topologically distinguishable). A topological space is preregular if and only if its Kolmogorov quotient is Hausdorff.

Equivalences

For a topological space , the following are equivalent:[2]

  • is a Hausdorff space.
  • Limits of nets in are unique.[3]
  • Limits of filters on are unique.[3]
  • Any singleton set is equal to the intersection of all closed neighbourhoods of .[4] (A closed neighbourhood of is a closed set that contains an open set containing .)
  • The diagonal is closed as a subset of the product space .
  • Any injection from the discrete space with two points to has the lifting property with respect to the map from the finite topological space with two open points and one closed point to a single point.

Examples of Hausdorff and non-Hausdorff spaces

Almost all spaces encountered in analysis are Hausdorff; most importantly, the real numbers (under the standard metric topology on real numbers) are a Hausdorff space. More generally, all metric spaces are Hausdorff. In fact, many spaces of use in analysis, such as topological groups and topological manifolds, have the Hausdorff condition explicitly stated in their definitions.

A simple example of a topology that is T1 but is not Hausdorff is the cofinite topology defined on an infinite set, as is the cocountable topology defined on an uncountable set.

Pseudometric spaces typically are not Hausdorff, but they are preregular, and their use in analysis is usually only in the construction of Hausdorff gauge spaces. Indeed, when analysts run across a non-Hausdorff space, it is still probably at least preregular, and then they simply replace it with its Kolmogorov quotient, which is Hausdorff.[5]

In contrast, non-preregular spaces are encountered much more frequently in abstract algebra and algebraic geometry, in particular as the Zariski topology on an algebraic variety or the spectrum of a ring. They also arise in the model theory of intuitionistic logic: every complete Heyting algebra is the algebra of open sets of some topological space, but this space need not be preregular, much less Hausdorff, and in fact usually is neither. The related concept of Scott domain also consists of non-preregular spaces.

While the existence of unique limits for convergent nets and filters implies that a space is Hausdorff, there are non-Hausdorff T1 spaces in which every convergent sequence has a unique limit.[6] Such spaces are called US spaces.[7] For sequential spaces, this notion is equivalent to being weakly hausdorff.

Properties

Subspaces and products of Hausdorff spaces are Hausdorff, but quotient spaces of Hausdorff spaces need not be Hausdorff. In fact, every topological space can be realized as the quotient of some Hausdorff space.[8]

Hausdorff spaces are T1, meaning that each singleton is a closed set. Similarly, preregular spaces are R0. Every Hausdorff space is a Sober space although the converse is in general not true.

Another property of Hausdorff spaces is that each compact set is a closed set. For non-Hausdorff spaces, it can be that each compact set is a closed set (for example, the cocountable topology on an uncountable set) or not (for example, the cofinite topology on an infinite set and the Sierpiński space).

The definition of a Hausdorff space says that points can be separated by neighborhoods. It turns out that this implies something which is seemingly stronger: in a Hausdorff space every pair of disjoint compact sets can also be separated by neighborhoods,[9] in other words there is a neighborhood of one set and a neighborhood of the other, such that the two neighborhoods are disjoint. This is an example of the general rule that compact sets often behave like points.

Compactness conditions together with preregularity often imply stronger separation axioms. For example, any locally compact preregular space is completely regular.[10][11] Compact preregular spaces are normal,[12] meaning that they satisfy Urysohn's lemma and the Tietze extension theorem and have partitions of unity subordinate to locally finite open covers. The Hausdorff versions of these statements are: every locally compact Hausdorff space is Tychonoff, and every compact Hausdorff space is normal Hausdorff.

The following results are some technical properties regarding maps (continuous and otherwise) to and from Hausdorff spaces.

Let be a continuous function and suppose is Hausdorff. Then the graph of , , is a closed subset of .

Let be a function and let be its kernel regarded as a subspace of .

  • If is continuous and is Hausdorff then is a closed set.
  • If is an open surjection and is a closed set then is Hausdorff.
  • If is a continuous, open surjection (i.e. an open quotient map) then is Hausdorff if and only if is a closed set.

If are continuous maps and is Hausdorff then the equalizer is a closed set in . It follows that if is Hausdorff and and agree on a dense subset of then . In other words, continuous functions into Hausdorff spaces are determined by their values on dense subsets.

Let be a closed surjection such that is compact for all . Then if is Hausdorff so is .

Let be a quotient map with a compact Hausdorff space. Then the following are equivalent:

  • is Hausdorff.
  • is a closed map.
  • is a closed set.

Preregularity versus regularity

All regular spaces are preregular, as are all Hausdorff spaces. There are many results for topological spaces that hold for both regular and Hausdorff spaces. Most of the time, these results hold for all preregular spaces; they were listed for regular and Hausdorff spaces separately because the idea of preregular spaces came later. On the other hand, those results that are truly about regularity generally do not also apply to nonregular Hausdorff spaces.

There are many situations where another condition of topological spaces (such as paracompactness or local compactness) will imply regularity if preregularity is satisfied. Such conditions often come in two versions: a regular version and a Hausdorff version. Although Hausdorff spaces are not, in general, regular, a Hausdorff space that is also (say) locally compact will be regular, because any Hausdorff space is preregular. Thus from a certain point of view, it is really preregularity, rather than regularity, that matters in these situations. However, definitions are usually still phrased in terms of regularity, since this condition is better known than preregularity.

See History of the separation axioms for more on this issue.

Variants

The terms "Hausdorff", "separated", and "preregular" can also be applied to such variants on topological spaces as uniform spaces, Cauchy spaces, and convergence spaces. The characteristic that unites the concept in all of these examples is that limits of nets and filters (when they exist) are unique (for separated spaces) or unique up to topological indistinguishability (for preregular spaces).

As it turns out, uniform spaces, and more generally Cauchy spaces, are always preregular, so the Hausdorff condition in these cases reduces to the T0 condition. These are also the spaces in which completeness makes sense, and Hausdorffness is a natural companion to completeness in these cases. Specifically, a space is complete if and only if every Cauchy net has at least one limit, while a space is Hausdorff if and only if every Cauchy net has at most one limit (since only Cauchy nets can have limits in the first place).

Algebra of functions

The algebra of continuous (real or complex) functions on a compact Hausdorff space is a commutative C*-algebra, and conversely by the Banach–Stone theorem one can recover the topology of the space from the algebraic properties of its algebra of continuous functions. This leads to noncommutative geometry, where one considers noncommutative C*-algebras as representing algebras of functions on a noncommutative space.

Academic humour

  • Hausdorff condition is illustrated by the pun that in Hausdorff spaces any two points can be "housed off" from each other by open sets.[13]
  • In the Mathematics Institute of the University of Bonn, in which Felix Hausdorff researched and lectured, there is a certain room designated the Hausdorff-Raum. This is a pun, as Raum means both room and space in German.

See also

  • Fixed-point space – Space where all functions have fixed points, a Hausdorff space X such that every continuous function f : XX has a fixed point.
  • Locally Hausdorff space
  • Non-Hausdorff manifold – generalization of manifolds
  • Quasitopological space – a set X equipped with a function that associates to every compact Hausdorff space K a collection of maps K→C satisfying certain natural conditions
  • Separation axiom – Axioms in topology defining notions of "separation"
  • Weak Hausdorff space – concept in algebraic topology

Notes

  1. ^ "Hausdorff space Definition & Meaning". www.dictionary.com. Retrieved 15 June 2022.
  2. ^ a b "Separation axioms in nLab". ncatlab.org.
  3. ^ a b Willard 2004, pp. 86–87
  4. ^ Bourbaki 1966, p. 75
  5. ^ See for instance Lp space#Lp spaces and Lebesgue integrals, Banach–Mazur compactum etc.
  6. ^ van Douwen, Eric K. (1993). "An anti-Hausdorff Fréchet space in which convergent sequences have unique limits". Topology and Its Applications. 51 (2): 147–158. doi:10.1016/0166-8641(93)90147-6.
  7. ^ Wilansky, Albert (1967). "Between T1 and T2". The American Mathematical Monthly. 74 (3): 261–266. doi:10.2307/2316017. JSTOR 2316017.
  8. ^ Shimrat, M. (1956). "Decomposition spaces and separation properties". Quarterly Journal of Mathematics. 2: 128–129. doi:10.1093/qmath/7.1.128.
  9. ^ Willard 2004, pp. 124
  10. ^ Schechter 1996, 17.14(d), p. 460.
  11. ^ "Locally compact preregular spaces are completely regular". math.stackexchange.com.
  12. ^ Schechter 1996, 17.7(g), p. 457.
  13. ^ Adams, Colin; Franzosa, Robert (2008). Introduction to Topology: Pure and Applied. Pearson Prentice Hall. p. 42. ISBN 978-0-13-184869-6.

References

Read more information:

Danau TahoeKoordinat39°6′N 120°6′W / 39.100°N 120.100°W / 39.100; -120.100Jenis perairansesar bongkahAliran masuk utama Aliran keluar utamaSungai TruckeeTerletak di negaraAmerika Serikat (California, Nevada)Panjang maksimal35 kmLebar maksimal19 kmArea permukaan500 km²Kedalaman rata-rata301 mKedalaman maksimal501 mVolume air151 km³Keliling1114 kmKetinggian permukaan1.899 mPermukimanSouth Lake Tahoe, CaliforniaStateline, NevadaTahoe City, California1 Perkiraa…

Запорожский национальный университет(ЗНУ)укр. Запорізький національний університет Первый учебный корпус Международное название Zaporizhzhia National University Прежнее название Запорожский государственный педагогический институт Девиз Класична освіта європейського рівня! Год осн…

Face ValueAlbum studio karya Phil CollinsDirilis9 Februari 1981DirekamAgustus 1980 — Januari 1981GenreSoft Rock Progressive RockDurasi47:22LabelVirgin RecordsAtlantic RecordsProduserPhil Collins & Hugh PadghamKronologi Phil Collins - -String Module Error: Match not foundString Module Error: Match not found Face Value (1981) Hello, I Must Be Going!(1982)Hello, I Must Be Going!1982 Face Value adalah album solo perdana Phil Collins, diterbitkan pada 9 Februari 1981. Lagu-lagu dalam album …

Berharap tak BerpisahSingel oleh Rezadari album KeyakinanDirilis2002FormatCD single, digital downloadGenreDance-popDurasi4:07LabelAquarius MusikindoPenciptaDenny Chasmala [1]Video musikVideo di YouTube Berharap tak Berpisah adalah singel dari album ketiga Reza, Keyakinan.[2] Produksi Lagu ini ditulis oleh Denny Chasmala[3] dan dirilis sebagai singel pada 2002. Video musik untuk lagu ini dibuat pada tahun 2002, dan diunggah ulang di YouTube pada 2014. Popularitas Lagu ini …

Representation of written Bengali language in the Latin script Romanisation of Bengali is the representation of written Bengali language in the Latin script. Various romanisation systems for Bengali are used, most of which do not perfectly represent Bengali pronunciation. While different standards for romanisation have been proposed for Bengali, none has been adopted with the same degree of uniformity as Japanese or Sanskrit.[note 1] The Bengali script has been included with the group of…

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

Eichmann in Jerusalem: A Report on the Banality of Evil PengarangHannah ArendtBahasaInggrisPenerbitViking PressTanggal terbit1963Jenis mediaCetak (Hardcover, Paperback)Halaman312 Eichmann in Jerusalem: A Report on the Banality of Evil adalah sebuah buku karya Hannah Arendt yang diterbitkan untuk pertama kalinya pada tahun 1963.[1] Arendt adalah seorang Yahudi yang mengungsi dari Jerman setelah kebangkitan Adolf Hitler. Buku ini berisi tentang pengadilan Adolf Eichmann, seorang …

Guangxi广西壮族自治区Gvangjsih Bouxcuengh Swcigih Carte indiquant la localisation du Guangxi (en rouge) sur la carte de la Chine. Administration Pays Chine Autres noms Chinois : 广西壮族自治区Pinyin : GuǎngxīZhuang : Gvangjsih Bouxcuengh Swcigih Abréviation 桂 (guì) Statut politique Région autonome Capitale Nanning Secrétaire du parti Liu Ning (en) Gouverneur Lan Tianli (en) Démographie Population 50 126 804 hab. (2020[1]) Densité 21…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أبريل 2020) هذه قائمة رؤساء تونس حسب العمر. الجدول الأول يرسم عمر كل رئيس تونسي في وقت تنصيبه الرئيس (التنصيب الأول إذا ت…

PenjaringanKecamatanPeta Kecamatan Penjaringan dengan kelurahannyaPeta lokasi Kecamatan PenjaringanPenjaringanPeta lokasi Kecamatan PenjaringanTampilkan peta IndonesiaPenjaringanPenjaringan (Indonesia)Tampilkan peta IndonesiaKoordinat: 6°07′10″S 106°45′58″E / 6.119466°S 106.766129°E / -6.119466; 106.766129Negara IndonesiaProvinsiDKI JakartaKota AdministrasiJakarta UtaraPemerintahan • CamatDepika Romadi[1]Populasi (2021) •&#…

Questa voce o sezione sull'argomento edizioni di competizioni calcistiche non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Serie C2 1981-1982 Competizione Serie C2 Sport Calcio Edizione 4ª Organizzatore Lega Nazionale Serie C Date dal 20 settembre 1981al 6 giugno 1982 Luogo Italia Partecipanti 72 Form…

Basilika Bunda Maria dari GuadalupeBasilika Minor Tempat Ziarah Bunda Maria dari GuadalupeBasilika Bunda Maria dari GuadalupeLokasiSan Luis PotosíNegaraMeksikoDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktifAdministrasiKeuskupan AgungKeuskupan Agung San Luis Potosí Basilika Tempat Ziarah Bunda Maria dari Guadalupe adalah sebuah gereja basilika minor Katolik yang terletak di San Luis Potosí, Meksiko. Basilika ini didedikasikan kepada Gelar Maria yaitu Bunda dar…

2018 Sri Lankan filmPaangshuPosterDirected byVisakesa Chandrasekaram[1]Written byVisakesa ChandrasekaramProduced byTVTStarringNita Fernando Nadee Kammellaweera Jagath ManuwarnaCinematographyDimuthu KalingaEdited bySithum SamarajeewaMusic byChinthaka JayakodyRelease dates September 2018 (2018-09) (Montreal) 21 August 2020 (2020-08-21) Running time86 minutesCountrySri LankaLanguageSinhala Paangshu (Sinhala: පාංශු; The Soil) is a 2018 Sri Lankan Sinhal…

Peta infrastruktur dan tata guna lahan di Komune Ramecourt.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiRamecourt merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuve…

American politician Norman A. MozleySt. Louis Globe-Democrat, November 9, 1894Member of the U.S. House of Representativesfrom Missouri's 14th districtIn officeMarch 4, 1895 – March 3, 1897Preceded byMarshall ArnoldSucceeded byWillard D. Vandiver Personal detailsBorn(1865-12-11)December 11, 1865Johnson County, Illinois, U.S.DiedMay 9, 1922(1922-05-09) (aged 56)Bloomfield, Missouri, U.S.Political partyRepublican Norman Adolphus Mozley (December 11, 1865 – May 9, 1922)…

العلاقات الإسرائيلية الزيمبابوية إسرائيل زيمبابوي   إسرائيل   زيمبابوي تعديل مصدري - تعديل   العلاقات الإسرائيلية الزيمبابوية هي العلاقات الثنائية التي تجمع بين إسرائيل وزيمبابوي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدول…

Consumer Federation of CaliforniaHeadquartersCaliforniaLocationU.S. The Consumer Federation of California (CFC) was founded in 1960 as a nonprofit consumer advocacy organization. CFC campaigns for state and federal laws and appears at the California state legislature in support of consumer-focused regulations.[1] The Consumer Federation of California is led by Executive Director Richard Holober and President Lucinda Sikes. CFC has advocated for medical and financial privacy, the preventi…

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879…

Public school in Eastbourne, East Sussex, England Eastbourne CollegeAddressOld Wish RoadEastbourne, East Sussex, BN21 4JYEnglandCoordinates50°45′46″N 0°16′52″E / 50.7627°N 0.2811°E / 50.7627; 0.2811InformationTypePublic schoolPrivate day and boardingMottoEx oriente salus(The haven [the bourne] from the East)Religious affiliation(s)Church of EnglandEstablished1867FoundersWilliam Cavendish, 7th Duke of Devonshire and other prominent Eastbourne citizensLocal auth…

Israeli activist (1931–2021) Ida NudelNudel and her dog arrive on a private plane, owned by Armand Hammer, at Ben-Gurion AirportBorn(1931-04-27)27 April 1931Novorossiysk, Azov-Black Sea Krai, Russian SFSR, Soviet UnionDied14 September 2021(2021-09-14) (aged 90)Rehovot, IsraelNationalityIsraeliCitizenshipIsraeliEducationEconomicOccupationEconomistOrganizationMother to mother אם-לאםKnown forRefusenik and an Israeli activistRelativesElena Ilana Fridman (sister), Lev Arie Fridman (b…

Kembali kehalaman sebelumnya