Share to: share facebook share twitter share wa share telegram print page

Noncommutative geometry

Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions, possibly in some generalized sense. A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which does not always equal ; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.

An approach giving deep insight about noncommutative spaces is through operator algebras, that is, algebras of bounded linear operators on a Hilbert space.[1] Perhaps one of the typical examples of a noncommutative space is the "noncommutative torus", which played a key role in the early development of this field in 1980s and lead to noncommutative versions of vector bundles, connections, curvature, etc.[2]

Motivation

The main motivation is to extend the commutative duality between spaces and functions to the noncommutative setting. In mathematics, spaces, which are geometric in nature, can be related to numerical functions on them. In general, such functions will form a commutative ring. For instance, one may take the ring C(X) of continuous complex-valued functions on a topological space X. In many cases (e.g., if X is a compact Hausdorff space), we can recover X from C(X), and therefore it makes some sense to say that X has commutative topology.

More specifically, in topology, compact Hausdorff topological spaces can be reconstructed from the Banach algebra of functions on the space (Gelfand–Naimark). In commutative algebraic geometry, algebraic schemes are locally prime spectra of commutative unital rings (A. Grothendieck), and every quasi-separated scheme can be reconstructed up to isomorphism of schemes from the category of quasicoherent sheaves of -modules (P. Gabriel–A. Rosenberg). For Grothendieck topologies, the cohomological properties of a site are invariants of the corresponding category of sheaves of sets viewed abstractly as a topos (A. Grothendieck). In all these cases, a space is reconstructed from the algebra of functions or its categorified version—some category of sheaves on that space.

Functions on a topological space can be multiplied and added pointwise hence they form a commutative algebra; in fact these operations are local in the topology of the base space, hence the functions form a sheaf of commutative rings over the base space.

The dream of noncommutative geometry is to generalize this duality to the duality between noncommutative algebras, or sheaves of noncommutative algebras, or sheaf-like noncommutative algebraic or operator-algebraic structures, and geometric entities of certain kinds, and give an interaction between the algebraic and geometric description of those via this duality.

Regarding that the commutative rings correspond to usual affine schemes, and commutative C*-algebras to usual topological spaces, the extension to noncommutative rings and algebras requires non-trivial generalization of topological spaces as "non-commutative spaces". For this reason there is some talk about non-commutative topology, though the term also has other meanings.

Applications in mathematical physics

Some applications in particle physics are described in the entries noncommutative standard model and noncommutative quantum field theory. The sudden rise in interest in noncommutative geometry in physics follows after the speculations of its role in M-theory made in 1997.[3]

Motivation from ergodic theory

Some of the theory developed by Alain Connes to handle noncommutative geometry at a technical level has roots in older attempts, in particular in ergodic theory. The proposal of George Mackey to create a virtual subgroup theory, with respect to which ergodic group actions would become homogeneous spaces of an extended kind, has by now been subsumed.

Noncommutative C*-algebras, von Neumann algebras

The (formal) duals of non-commutative C*-algebras are often now called non-commutative spaces. This is by analogy with the Gelfand representation, which shows that commutative C*-algebras are dual to locally compact Hausdorff spaces. In general, one can associate to any C*-algebra S a topological space Ŝ; see spectrum of a C*-algebra.

For the duality between localizable measure spaces and commutative von Neumann algebras, noncommutative von Neumann algebras are called non-commutative measure spaces.

Noncommutative differentiable manifolds

A smooth Riemannian manifold M is a topological space with a lot of extra structure. From its algebra of continuous functions C(M), we only recover M topologically. The algebraic invariant that recovers the Riemannian structure is a spectral triple. It is constructed from a smooth vector bundle E over M, e.g. the exterior algebra bundle. The Hilbert space L2(ME) of square integrable sections of E carries a representation of C(M) by multiplication operators, and we consider an unbounded operator D in L2(ME) with compact resolvent (e.g. the signature operator), such that the commutators [Df] are bounded whenever f is smooth. A deep theorem[4] states that M as a Riemannian manifold can be recovered from this data.

This suggests that one might define a noncommutative Riemannian manifold as a spectral triple (AHD), consisting of a representation of a C*-algebra A on a Hilbert space H, together with an unbounded operator D on H, with compact resolvent, such that [Da] is bounded for all a in some dense subalgebra of A. Research in spectral triples is very active, and many examples of noncommutative manifolds have been constructed.

Noncommutative affine and projective schemes

In analogy to the duality between affine schemes and commutative rings, we define a category of noncommutative affine schemes as the dual of the category of associative unital rings. There are certain analogues of Zariski topology in that context so that one can glue such affine schemes to more general objects.

There are also generalizations of the Cone and of the Proj of a commutative graded ring, mimicking a theorem of Serre on Proj. Namely the category of quasicoherent sheaves of O-modules on a Proj of a commutative graded algebra is equivalent to the category of graded modules over the ring localized on Serre's subcategory of graded modules of finite length; there is also analogous theorem for coherent sheaves when the algebra is Noetherian. This theorem is extended as a definition of noncommutative projective geometry by Michael Artin and J. J. Zhang,[5] who add also some general ring-theoretic conditions (e.g. Artin–Schelter regularity).

Many properties of projective schemes extend to this context. For example, there exists an analog of the celebrated Serre duality for noncommutative projective schemes of Artin and Zhang.[6]

A. L. Rosenberg has created a rather general relative concept of noncommutative quasicompact scheme (over a base category), abstracting Grothendieck's study of morphisms of schemes and covers in terms of categories of quasicoherent sheaves and flat localization functors.[7] There is also another interesting approach via localization theory, due to Fred Van Oystaeyen, Luc Willaert and Alain Verschoren, where the main concept is that of a schematic algebra.[8][9]

Invariants for noncommutative spaces

Some of the motivating questions of the theory are concerned with extending known topological invariants to formal duals of noncommutative (operator) algebras and other replacements and candidates for noncommutative spaces. One of the main starting points of Alain Connes' direction in noncommutative geometry is his discovery of a new homology theory associated to noncommutative associative algebras and noncommutative operator algebras, namely the cyclic homology and its relations to the algebraic K-theory (primarily via Connes–Chern character map).

The theory of characteristic classes of smooth manifolds has been extended to spectral triples, employing the tools of operator K-theory and cyclic cohomology. Several generalizations of now-classical index theorems allow for effective extraction of numerical invariants from spectral triples. The fundamental characteristic class in cyclic cohomology, the JLO cocycle, generalizes the classical Chern character.

Examples of noncommutative spaces

Connection

In the sense of Connes

A Connes connection is a noncommutative generalization of a connection in differential geometry. It was introduced by Alain Connes, and was later generalized by Joachim Cuntz and Daniel Quillen.

Definition

Given a right A-module E, a Connes connection on E is a linear map

that satisfies the Leibniz rule .[11]

See also

Citations

  1. ^ Khalkhali & Marcolli 2008, p. 171.
  2. ^ Khalkhali & Marcolli 2008, p. 21.
  3. ^ Connes, Alain; Douglas, Michael R; Schwarz, Albert (1998-02-05). "Noncommutative geometry and Matrix theory". Journal of High Energy Physics. 1998 (2): 003. arXiv:hep-th/9711162. Bibcode:1998JHEP...02..003C. doi:10.1088/1126-6708/1998/02/003. ISSN 1029-8479. S2CID 7562354.
  4. ^ Connes, Alain (2013). "On the spectral characterization of manifolds". Journal of Noncommutative Geometry. 7: 1–82. arXiv:0810.2088. doi:10.4171/JNCG/108. S2CID 17287100.
  5. ^ Artin, M.; Zhang, J.J. (1994). "Noncommutative Projective Schemes". Advances in Mathematics. 109 (2): 228–287. doi:10.1006/aima.1994.1087. ISSN 0001-8708.
  6. ^ Yekutieli, Amnon; Zhang, James J. (1997-03-01). "Serre duality for noncommutative projective schemes". Proceedings of the American Mathematical Society. 125 (3). American Mathematical Society (AMS): 697–708. doi:10.1090/s0002-9939-97-03782-9. ISSN 0002-9939.
  7. ^ A. L. Rosenberg, Noncommutative schemes, Compositio Mathematica 112 (1998) 93--125, doi; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, dvi, ps; MSRI lecture Noncommutative schemes and spaces (Feb 2000): video
  8. ^ Freddy van Oystaeyen, Algebraic geometry for associative algebras, ISBN 0-8247-0424-X - New York: Dekker, 2000.- 287 p. - (Monographs and textbooks in pure and applied mathematics, 232)
  9. ^ Van Oystaeyen, Fred; Willaert, Luc (1995). "Grothendieck topology, coherent sheaves and Serre's theorem for schematic algebras" (PDF). Journal of Pure and Applied Algebra. 104 (1). Elsevier BV: 109–122. doi:10.1016/0022-4049(94)00118-3. hdl:10067/124190151162165141. ISSN 0022-4049.
  10. ^ Snyder, Hartland S. (1947-01-01). "Quantized Space-Time". Physical Review. 71 (1). American Physical Society (APS): 38–41. Bibcode:1947PhRv...71...38S. doi:10.1103/physrev.71.38. ISSN 0031-899X.
  11. ^ Vale 2009, Definition 8.1.

References

References for Connes connection

Further reading

Read other articles:

HollerAlbum mini karya Girls' Generation-TTSDirilisSeptember 16, 2014Direkam2014; S.M. Studios, (Seoul, Korea Selatan)GenreK-popBahasaBahasa KoreaLabelS.M. EntertainmentProduserLee Soo Man (Executive)Kronologi Girls' Generation-TTS Twinkle(2012)Twinkle2012 Holler(2014) Dear Santa(2015)Dear Santa2015 Singel dalam album Holler WhisperDirilis: 13 September 2014 HollerDirilis: 16 September 2014 Holler adalah album mini kedua dari grup vokal wanita, Girls' Generation-TTS. Album ini dirilis secara…

Williams Grand Prix Engineering merupakan tim balap asal Inggris yang berkompetisi dalam Formula Satu sejak musim 1977. Selain itu, tim tersebut juga beberapa kali berpartisipasi dalam balapan Formula Satu non-kejuaraan. Tabel di bawah menjabarkan hasil lengkap dari partisipasi Williams Grand Prix Engineering dalam balap Grand Prix. Hasil Kejuaraan Dunia Formula Satu Partisipasi tim kerja Era 1970-an (key) Tahun Sasis Mesin Ban Pembalap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Poin WCC 1977 Mar…

Untuk orang lain dengan nama yang sama, lihat Charles Alcock. Charles Alcock Informasi pribadiNama lengkap Charles William AlcockTanggal lahir (1842-12-02)2 Desember 1842Tempat lahir Sunderland, County Durham, InggrisTanggal meninggal 26 Februari 1907(1907-02-26) (umur 64)Tempat meninggal Brighton, Sussex, InggrisPosisi bermain Striker tengahKarier senior*Tahun Tim Tampil (Gol)1862–1876 Wanderers Harrow Pilgrims Tim nasional1870–1875 Inggris 5 (1) * Penampilan dan gol di klub senior han…

B-34 Role FighterType of aircraft Manufacturer Avia Designer František Novotný First flight 2 February 1932 Primary user Czechoslovakian Air Force Number built 14 The Avia B-34 was a biplane fighter aircraft built in Czechoslovakia in the early 1930s. It was the first design of František Novotný for the Avia company and although built only in small numbers, it paved the way for the Avia B-534. Development The B-34 was an all-metal single-bay biplane of conventional configuration, with t…

Toscana region di Italia Toscana (it) bendera Toscana Tempat <mapframe>: Judul Italy/Region/Tuscany.map .map bukan merupakan halaman data peta yang sah Negara berdaulatItalia NegaraItalia Ibu kotaFirenze Pembagian administratifProvinsi Arezzo Provinsi Firenze Provinsi Grosseto Provinsi Livorno Provinsi Lucca Provinsi Massa-Carrara Provinsi Pisa Provinsi Pistoia Provinsi Prato Provinsi Siena Metropolitan City of Florence (en) (1r Januari 2015) PendudukTotal3.729.641  (2019 )Bahasa resm…

2012 2022 Élections législatives de 2017 dans le Gard 6 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Campagne 22 mai au 10 juin12 juin au 16 juin Corps électoral et résultats Inscrits au 1er tour 537 622 Votants au 1er tour 258 713   48,12 %  13,2 Votes exprimés au 1er tour 252 524 Votes blancs au 1er tour 4 343 Votes nuls au 1er tour 1 846 Inscrits au 2d tour 537 624 Votants au 2d tour 233 597   43,45 % Vo…

Marée verte faisant suite à une prolifération d'Ulva rigida, dans le nord du Finistère. Une marée verte est un important dépôt d'algues laissé par la mer sur la zone intertidale, visible à marée basse ou flottant entre deux eaux lorsque la mer monte. Le développement de ces algues est lié à l'excès dans le milieu de nutriments (azote sous toutes ses formes, phosphore…) issus des rejets des activités humaines (élevage, agriculture, urbanisation…). La putréfaction de ces algue…

North Carolina's at-large congressional districtObsolete districtCreated1880Eliminated1885Years active1883–1885 North Carolina elected one of its members of the United States House of Representatives at-large statewide. This only happened once, during the 48th United States Congress. That member was Risden T. Bennett. List of member representing the district Member(Residence) Party Years Congress Electoral history Seat established March 4, 1883 Risden Tyler Bennett(Wadesboro) Democratic March …

HidayatullahTanggal pendirian5 Februari 1973PendiriK.H. Abdullah SaidDidirikan diBalikpapanTipeOrganisasi massa IslamKantor pusatJl. Cipinang Cempedak I/14, Jatinegara, Jakarta TimurPimpinan UmumK.H. Abdurrahman MuhammadKetua UmumK.H. Nashirul Haq MarlingSitus webhttp://hidayatullah.or.id/ Hidayatullah adalah organisasi massa Islam yang terbentuk di Kalimantan Timur pada 5 Februari 1973. Organisasi ini memiliki cabang tersebar di seluruh Indonesia. Hidayatullah juga dikenal sebagai organisasi ya…

Part of the Persian Qanat, Iranian national heritage site Qanats of GonabadThe Persian QanatShown within IranAlternative nameKariz e Kay KhosrowLocationGonabad, Razavi Khorasan Province, Iran[1]Regiongonabad1506Coordinates34°19′49″N 58°41′02″E / 34.33028°N 58.68389°E / 34.33028; 58.68389TypeSettlementPart of1506HistoryBuilderCyrus the Great, Kai KhosrowMaterialClayFounded6th century BCEPeriodsAchaemenid EmpireCulturesPersianSite notesConditio…

American politician George ConnellGeorge Connell with unknown woman during oath taking ceremony87th Mayor of PhiladelphiaIn officeAugust 11, 1939 – January 1, 1940Preceded bySamuel Davis WilsonSucceeded byRobert Eneas LambertonPresident of the Philadelphia City CouncilIn officeJanuary 1936 – August 11, 1939Member of the Philadelphia City CouncilIn office1913 – August 12, 1939 Personal detailsBorn(1871-11-02)November 2, 1871Philadelphia, Pennsylvania, U.S.DiedOcto…

Egyptian pharaoh Mersekhemre InedMersekhemre Neferhotep II ?Statue of Mersekhemre Neferhotep II, who could be the same person as Mersekhemre Ined. Discovered in the Karnak cachette, now on display in the Egyptian Museum, CG 42024.PharaohReign3 years, 1 to 4 months and 1 dayPredecessorSankhenre SewadjtuSuccessorSewadjkare HoriRoyal titulary Prenomen  (Praenomen) Mersekhemre[1][2] Mr-sḫm-Rˁ He who loves the power of Ra Turin canon: Mersekhemre Ined Mr.j-sḫm-Rˁ-ind H…

Mazda BT-50Ford RangerInformasiProdusenMazdaMasa produksi2006–sekarangBodi & rangkaKelasTruk pikapMobil terkaitFord Ranger2007-2019Isuzu D-Max 2019-sekarangKronologiPendahuluMazda B-SeriesPenerusMazda BT-50 (berbasis Isuzu D-Max) Mazda BT-50 (J97M) adalah truk pikap yang diproduksi oleh Mazda sejak 2006. Ford juga menjual versi sejenis dari BT-50 yang dinamai Ford Ranger dan SUV Ford Everest. Generasi kedua Ranger didesain oleh Ford Australia, dengan Mazda juga menjualnya dengan nama BT-50…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hinson's Island, Bermuda – news · newspapers · books · scholar · JSTOR (March 2009) (Learn how and when to remove this message) LighthouseHinson's Island Lighthouse LocationHinson's Island, Paget Parish, Bermuda Coordinates32°17′04″N 64°48′22″W࿯…

MavenIndustryAutomotive service industryDefunct2020HeadquartersDetroit, MichiganAreas servedUnited StatesCanadaAustraliaKey peopleSigal Cordeiro, Vice President of Maven and GM Urban Mobility[1]ServicesCar sharingPeer-to-peer car sharingGig rentalsParentGeneral Motors Maven was a car sharing service launched by General Motors (GM) in 2016. It provided services such as carsharing and peer-to-peer car sharing for personal use and also rented to drivers of gig economy professions such as Ub…

This article is about the tennis tournament. For other uses, see Taiwan Open. Tennis tournamentTaipei WTA ChallengerTournament informationEvent nameTaipei WTA ChallengerLocationTaipei CityTaiwanVenueTaipei ArenaCategoryWTA 125K seriesSurfaceCarpet - indoorsDraw32S / 16Q / 16DPrize moneyUS$125,000 (2019)Websitewww.oectennis.comCurrent champions (2019)Singles Vitalia DiatchenkoDoubles Lee Ya-hsuan Wu Fang-hsien Chuang Chia-jung has lifted the doubles trophy three times at this event as t…

Chemical compound MethamnetamineLegal statusLegal status DE: NpSG (Industrial and scientific use only) UK: Under Psychoactive Substances Act Illegal in Japan Identifiers IUPAC name N-Methyl-1-(naphthalen-2-yl)propan-2-amine CAS Number1178720-66-5 YPubChem CID17802040ChemSpider38754167UNIICAS64BB01BCompTox Dashboard (EPA)DTXSID801032850 Chemical and physical dataFormulaC14H17NMolar mass199.297 g·mol−13D model (JSmol)Interactive image SMILES CNC(C)Cc1ccc2ccccc2c1 InChI InChI…

Post-split Iraqi Ba'athist political party This article is about the branch that controlled Iraq. For the pan-Arab Ba'ath Party, which is Iraqi-led but has branches in multiple countries, see Ba'ath Party (Iraqi-dominated faction). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is missing information about the party's activities after 2012. Please expand the article to include …

List of statements adopted at Charlotte, in Mecklenburg County, North Carolina Plaque commemorating the Mecklenburg Resolves located in Charlotte, North Carolina The Mecklenburg Resolves, or Charlotte Town Resolves, were a list of statements adopted at Charlotte, in Mecklenburg County, North Carolina on May 31, 1775; drafted in the month following the fighting at Lexington and Concord.[1] Similar lists of resolves were issued by other local colonial governments at that time, none of whic…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يونيو 2019) الدوري البولندي الممتاز 1988–89 تفاصيل الموسم الدوري البولندي الممتاز  النسخة 63  البلد بولندا  المنظم…

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya