Share to: share facebook share twitter share wa share telegram print page

Kirchhoff's theorem

In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time from the determinant of a submatrix of the Laplacian matrix of the graph; specifically, the number is equal to any cofactor of the Laplacian matrix. Kirchhoff's theorem is a generalization of Cayley's formula which provides the number of spanning trees in a complete graph.

Kirchhoff's theorem relies on the notion of the Laplacian matrix of a graph, which is equal to the difference between the graph's degree matrix (a diagonal matrix with vertex degrees on the diagonals) and its adjacency matrix (a (0,1)-matrix with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise).

For a given connected graph G with n labeled vertices, let λ1λ2, ..., λn−1 be the non-zero eigenvalues of its Laplacian matrix. Then the number of spanning trees of G is

An English translation of Kirchhoff's original 1847 paper was made by J. B. O'Toole and published in 1958.[1]

An example using the matrix-tree theorem

The Matrix-Tree Theorem can be used to compute the number of labeled spanning trees of this graph.

First, construct the Laplacian matrix Q for the example diamond graph G (see image on the right):

Next, construct a matrix Q* by deleting any row and any column from Q. For example, deleting row 1 and column 1 yields

Finally, take the determinant of Q* to obtain t(G), which is 8 for the diamond graph. (Notice t(G) is the (1,1)-cofactor of Q in this example.)

Proof outline

(The proof below is based on the Cauchy–Binet formula. An elementary induction argument for Kirchhoff's theorem can be found on page 654 of Moore (2011).[2])

First notice that the Laplacian matrix has the property that the sum of its entries across any row and any column is 0. Thus we can transform any minor into any other minor by adding rows and columns, switching them, and multiplying a row or a column by −1. Thus the cofactors are the same up to sign, and it can be verified that, in fact, they have the same sign.

We proceed to show that the determinant of the minor M11 counts the number of spanning trees. Let n be the number of vertices of the graph, and m the number of its edges. The incidence matrix E is an n-by-m matrix, which may be defined as follows: suppose that (i, j) is the kth edge of the graph, and that i < j. Then Eik = 1, Ejk = −1, and all other entries in column k are 0 (see oriented incidence matrix for understanding this modified incidence matrix E). For the preceding example (with n = 4 and m = 5):

Recall that the Laplacian L can be factored into the product of the incidence matrix and its transpose, i.e., L = EET. Furthermore, let F be the matrix E with its first row deleted, so that FFT = M11.

Now the Cauchy–Binet formula allows us to write

where S ranges across subsets of [m] of size n − 1, and FS denotes the (n − 1)-by-(n − 1) matrix whose columns are those of F with index in S. Then every S specifies n − 1 edges of the original graph, and it can be shown that those edges induce a spanning tree if and only if the determinant of FS is +1 or −1, and that they do not induce a spanning tree if and only if the determinant is 0. This completes the proof.

Particular cases and generalizations

Cayley's formula

Cayley's formula follows from Kirchhoff's theorem as a special case, since every vector with 1 in one place, −1 in another place, and 0 elsewhere is an eigenvector of the Laplacian matrix of the complete graph, with the corresponding eigenvalue being n. These vectors together span a space of dimension n − 1, so there are no other non-zero eigenvalues.

Alternatively, note that as Cayley's formula counts the number of distinct labeled trees of a complete graph Kn we need to compute any cofactor of the Laplacian matrix of Kn. The Laplacian matrix in this case is

Any cofactor of the above matrix is nn−2, which is Cayley's formula.

Kirchhoff's theorem for multigraphs

Kirchhoff's theorem holds for multigraphs as well; the matrix Q is modified as follows:

  • The entry qi,j equals −m, where m is the number of edges between i and j;
  • when counting the degree of a vertex, all loops are excluded.

Cayley's formula for a complete multigraph is mn-1(nn-1-(n-1)nn-2) by same methods produced above, since a simple graph is a multigraph with m = 1.

Explicit enumeration of spanning trees

Kirchhoff's theorem can be strengthened by altering the definition of the Laplacian matrix. Rather than merely counting edges emanating from each vertex or connecting a pair of vertices, label each edge with an indeterminate and let the (i, j)-th entry of the modified Laplacian matrix be the sum over the indeterminates corresponding to edges between the i-th and j-th vertices when i does not equal j, and the negative sum over all indeterminates corresponding to edges emanating from the i-th vertex when i equals j.

The determinant of the modified Laplacian matrix by deleting any row and column (similar to finding the number of spanning trees from the original Laplacian matrix), above is then a homogeneous polynomial (the Kirchhoff polynomial) in the indeterminates corresponding to the edges of the graph. After collecting terms and performing all possible cancellations, each monomial in the resulting expression represents a spanning tree consisting of the edges corresponding to the indeterminates appearing in that monomial. In this way, one can obtain explicit enumeration of all the spanning trees of the graph simply by computing the determinant.

For a proof of this version of the theorem see Bollobás (1998).[3]

Matroids

The spanning trees of a graph form the bases of a graphic matroid, so Kirchhoff's theorem provides a formula to count the number of bases in a graphic matroid. The same method may also be used to count the number of bases in regular matroids, a generalization of the graphic matroids (Maurer 1976).

Kirchhoff's theorem for directed multigraphs

Kirchhoff's theorem can be modified to count the number of oriented spanning trees in directed multigraphs. The matrix Q is constructed as follows:

  • The entry qi,j for distinct i and j equals −m, where m is the number of edges from i to j;
  • The entry qi,i equals the indegree of i minus the number of loops at i.

The number of oriented spanning trees rooted at a vertex i is the determinant of the matrix gotten by removing the ith row and column of Q

Counting spanning k-component forests

Kirchhoff's theorem can be generalized to count k-component spanning forests in an unweighted graph.[4] A k-component spanning forest is a subgraph with k connected components that contains all vertices and is cycle-free, i.e., there is at most one path between each pair of vertices. Given such a forest F with connected components , define its weight to be the product of the number of vertices in each component. Then

where the sum is over all k-component spanning forests and is the coefficient of of the polynomial

The last factor in the polynomial is due to the zero eigenvalue . More explicitly, the number can be computed as

where the sum is over all nk-element subsets of . For example

Since a spanning forest with n–1 components corresponds to a single edge, the k = n – 1 case states that the sum of the eigenvalues of Q is twice the number of edges. The k = 1 case corresponds to the original Kirchhoff theorem since the weight of every spanning tree is n.

The proof can be done analogously to the proof of Kirchhoff's theorem. An invertible submatrix of the incidence matrix corresponds bijectively to a k-component spanning forest with a choice of vertex for each component.

The coefficients are up to sign the coefficients of the characteristic polynomial of Q.

See also

References

  1. ^ O'Toole, J.B. "On the Solution of the Equations Obtained from the Investigation of the Linear Distribution of Galvanic Currents". IRE Transactions on Circuit Theory. 5 (1): 4–7. doi:10.1109/TCT.1958.1086426.
  2. ^ Moore, Cristopher (2011). The nature of computation. Oxford England New York: Oxford University Press. ISBN 978-0-19-923321-2. OCLC 180753706.
  3. ^ Bollobás, Béla (1998). Modern graph theory. New York: Springer. doi:10.1007/978-1-4612-0619-4. ISBN 978-0-387-98488-9.
  4. ^ Biggs, N. (1993). Algebraic Graph Theory. Cambridge University Press.

External links

Read more information:

Dongfeng Motor Company LimitedJenisPrivate joint ventureIndustriOtomotifDidirikan9 Juni 2003 (Shiyan)[1]KantorpusatWuhan, Hubei, ChinaProdukMobilKaryawanApproximately 70,000[1]IndukDongfeng Motor Corporation (50%)Nissan Motors (50%)[1]Situs webwww.dfl.com.cn www.dfpv.com.cn Dongfeng Motor Company Limited Hanzi tradisional: 東風汽車有限公司 Hanzi sederhana: 东风汽车有限公司 Alih aksara Mandarin - Hanyu Pinyin: Dōngfēng Qìchē Yǒuxiàn Gōngsī - Wade-Gi…

OraQuickPenggunaan OraQuickPemilikOraSure TechnologiesDiluncurkan2012Situs weboraquick.com OraQuick adalah perangkat tes HIV pribadi yang diproduksi oleh Orasure Technologies dan disetujui penggunaannya oleh Food and Drug Administration (FDA) Amerika Serikat pada tahun 2012.[1] OraQuick merupakan salah satu dari dua perangkat tes HIV pribadi yang tersedia di pasaran. Produk lainnya bernama Home Access HIV-1 Test System.[2] OraQuick dapat dibeli oleh siapapun yang berusia di atas …

Castello del MateseKomuneComune di Castello del MateseLokasi Castello del Matese di Provinsi CasertaNegara ItaliaWilayah CampaniaProvinsiCaserta (CE)Luas[1] • Total21,77 km2 (8,41 sq mi)Ketinggian[2]476 m (1,562 ft)Populasi (2016)[3] • Total1.509 • Kepadatan69/km2 (180/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos81016Kode area telepon0823Situs webhttp://www.parco…

Ini adalah nama Maluku, (Kei), marganya adalah Sadsuitubun Karel SadsuitubunPerangko Karel Sadsuitubun keluaran tahun 1966 Informasi pribadiLahirKarel Sadsuitubun(1928-10-14)14 Oktober 1928Tual, Maluku TenggaraMeninggal1 Oktober 1965(1965-10-01) (umur 36)Jakarta, IndonesiaSuami/istriMargaretha WaginahAnakPhilipus SumarnoPetrus Indro WaluyoLinus Paulus SupraptoPekerjaanPolisiPenghargaan Pahlawan Revolusi - KPLB AnumertaKarier militerPihak IndonesiaDinas/cabang Kepolisian Negara Republik…

Ossido di etileneformula di struttura modello molecolare Nome IUPACossirano Nomi alternativiossido di etilene1,2-epossietanoossido di dimetilene Caratteristiche generaliFormula bruta o molecolareC2H4O Massa molecolare (u)44,05 Aspettogas incolore Numero CAS75-21-8 Numero EINECS200-849-9 PubChem6354 SMILESC1CO1 Proprietà chimico-fisicheDensità (g/cm3, in c.s.)0,87 Indice di rifrazione1,360 Solubilità in acquacompletamente solubile Coefficiente di ripartizione 1-ottanolo/acqua-0,30 Temperatura …

International treaty Convention on Cluster MunitionsSignatories to the convention (blue) and states parties (purple)TypeDisarmamentDrafted19–30 May 2008 in DublinSigned3 December 2008LocationOslo, NorwayEffective1 August 2010[1]Condition6 months after 30 ratifications[2]Signatories108[3]Parties112[3]DepositaryUN Secretary-General[4]LanguagesArabic, Chinese, English, French, Russian, and Spanish[5]Full text Convention on Cluster Munitions at …

Chaca Chaca chaca Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Siluriformes Subordo: Siluroidei Superfamili: Siluroidea Famili: ChacidaeBleeker, 1858 Genus: ChacaJ. E. Gray, 1831 Spesies tipe Platystacus chacaHamilton, 1822 Spesies[2][1] Chaca bankanensis Bleeker, 1852 Chaca burmensis B. A. Brown & Ferraris, 1988 Chaca chaca (F. Hamilton, 1822) Chaca serica H. H. Ng & Kottelat, 2012[1] Chaca merupakan satu-sat…

Erri De Luca al Trento Film Festival 2012 Enrico De Luca, detto Erri (Napoli, 20 maggio 1950), è uno scrittore, giornalista, poeta e traduttore italiano. Indice 1 Biografia 2 La Fondazione 3 Opere 3.1 Narrativa, saggistica e altri scritti 3.2 Raccolte poetiche 3.3 Teatro e cinema 3.4 Traduzioni 3.5 Collaborazioni 4 Audiolibri 5 Riconoscimenti 6 Note 7 Bibliografia 8 Altri progetti 9 Collegamenti esterni Biografia «Considero valore ogni forma di vita, la neve, la fragola, la mosca. Considero va…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Maryul di Kekaisaran Tibet yang difragmentasi c. 900 Istana Shey, ibu kota Maryul Maryul Ngari (Mar-yul mNgah-ris), berarti dataran rendah Ngari atau dataran rendah Tibet Barat,[1] dahulu adalah suatu kerajaan Tibet Barat di daerah yang sek…

Gerarda Huzenkamp Bosgoed pada usia 110 (14 Mei 1980), orang Belanda tertua saat itu Seorang supercentenarian adalah seseorang yang telah hidup atau melewati ulang tahun ke-110 mereka. Usia ini dicapai oleh sekitar satu dalam 1.000 centenarian.[1] Anderson dan lainnya menyimpulkan bahwa supercentenarian hidup dalam suatu kehidupan yang biasanya bebas dari penyakit utama yang berhubungan dengan usia sampai sesaat sebelum rentang hidup manusia maksimum dicapai (antara 110 dan 115 tahun).&#…

Defunct Spanish version of Cartoon Network Not to be confused with Cartoonito (Latin American TV channel). Television channel CartoonitoBroadcast areaSpainHeadquarters160 Old Street, London, England, United KingdomProgrammingLanguage(s)SpanishEnglishPicture format4:3 SDTVOwnershipOwnerTurner Broadcasting System EspañaSister channelsCartoon NetworkHistoryLaunchedSeptember 1, 2011; 12 years ago (2011-09-01)ReplacedBoomerangClosed30 June 2013; 10 years ago (2013…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Gustav Waldaufrom 1898Lahir(1871-02-27)27 Februari 1871Ergolding, JermanMeninggal25 Mei 1958(1958-05-25) (umur 87)Munich, JermanPekerjaanPemeranTahun aktif1915-1955 Gustav Waldau (27 Februari 1871 – 25 Mei 1958) adalah seorang p…

Bartosz Bereszyński Bartosz Bereszyński in 2018Informasi pribadiNama lengkap Bartosz BereszyńskiTanggal lahir 12 Juli 1992 (umur 31)Tempat lahir Poznań, PolandiaTinggi 182 cm (6 ft 0 in)Posisi bermain BekInformasi klubKlub saat ini SampdoriaNomor 24Karier senior*Tahun Tim Tampil (Gol)2017 – Sampdoria 44 (0)Tim nasional2013 – Polandia 11 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Bartosz Bereszyński (lahir 12 Juli 1992) adalah seorang pe…

Careful What You Wish ForPoster rilis teaterSutradaraElizabeth AllenProduserAshok AmritrajBradley GalloMichael A. HelfantRobert SteinDitulis olehChris FrisinaPemeranNick JonasIsabel LucasGraham RogersDermot MulroneyPenata musikJosh DebneyThe Newton BrothersSinematograferRogier StoffersPenyuntingGeofrey HildrewPerusahaanproduksiTroika PicturesMerced Media PartnersAmasia EntertainmentHyde Park EntertainmentDistributorBig Air StudiosTanggal rilis5 Maret 2015Durasi90 menitNegaraAmerika Serikat…

The Haline contraction coefficient, abbreviated as β, is a coefficient that describes the change in ocean density due to a salinity change, while the potential temperature and the pressure are kept constant. It is a parameter in the Equation Of State (EOS) of the ocean. β is also described as the saline contraction coefficient and is measured in [kg]/[g] in the EOS that describes the ocean. An example is TEOS-10.[1] This is the thermodynamic equation of state.[2] β is the sali…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. EvieTokoh DescendantsPenampilanperdanaDescendants (2015)PenampilanterakhirDescendants : wicked worldPenciptaKenny OrtegaPemeranSofia CarsonPengisi suaraSofia Carson (di Wicked World)InformasiJenis kelaminPerempuanKeluargaThe Evil Queen (ibu), Snow Wh…

Julius Aghahowa Aghahowa bersama Shakhtar Donetsk pada tahun 2010Informasi pribadiNama lengkap Julius Efosa AghahowaTanggal lahir 12 Februari 1982 (umur 42)Tempat lahir Benin City, NigeriaTinggi 1,79 m (5 ft 10+1⁄2 in)Posisi bermain PenyerangKarier junior Police Machines Bendel InsuranceKarier senior*Tahun Tim Tampil (Gol)1998–1999 Bendel Insurance 1999–2000 Espérance 2000–2007 Shakhtar Donetsk 89 (32)2001 → Shakhtar-2 Donetsk 3 (0)2007–2008 Wigan Athletic 20…

Leandro Damián Cufré Informasi pribadiNama lengkap Leandro Damián CufréTanggal lahir 9 Mei 1978Tempat lahir La Plata, ArgentinaPosisi bermain BekInformasi klubKlub saat ini A.S. RomaKarier senior*Tahun Tim Tampil (Gol)1996–2002 Gimnasia La Plata 133 (4)2002–2006 Roma 68 (1)2003–2004 → Siena (pinjaman) 31 (0)2006–2009 Monaco 60 (4)2008–2009 → Hertha BSC (pinjaman) 5 (0)2009–2011 Dinamo Zagreb 53 (0)2011– Club Atlas 0 (0)Tim nasional‡2000 Argentina U-20 2000–2006 Argentin…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada September 2016. Nathaniël Will Informasi pribadiNama lengkap Nathaniël WillTanggal lahir 16 Februari 1989 (umur 35)Tempat lahir Lelystad, BelandaTinggi 1,77 m (5 ft 9+1⁄2 in)Posisi bermain BekInformasi klubKlub saat ini NECNomor 2Karier juni…

Bank Negara Malaysia بڠک نݢارا مليسياKantor pusatKuala Lumpur, MalaysiaDidirikan26 Januari 1959; 65 tahun lalu (1959-01-26)GabenorNor Shamsiah Mohd YunusMarzunisham Omar (Timbalan Gabenor)Negara MalaysiaMata uangRinggit MalaysiaMYR (ISO 4217)Situs webbnm.gov.my Bank Negara Malaysia. Bank Negara Malaysia adalah bank sentral Malaysia. Markas besarnya terletak di Kuala Lumpur, Malaysia. Bank Negara didirikan pada 26 Januari 1959 untuk mengedarkan mata uang, bertindak sebagai…

Kembali kehalaman sebelumnya