Share to: share facebook share twitter share wa share telegram print page

Langlands–Deligne local constant

In mathematics, the Langlands–Deligne local constant, also known as the local epsilon factor[1] or local Artin root number (up to an elementary real function of s), is an elementary function associated with a representation of the Weil group of a local field. The functional equation

L(ρ,s) = ε(ρ,s)L(ρ,1−s)

of an Artin L-function has an elementary function ε(ρ,s) appearing in it, equal to a constant called the Artin root number times an elementary real function of s, and Langlands discovered that ε(ρ,s) can be written in a canonical way as a product

ε(ρ,s) = Π ε(ρv, s, ψv)

of local constants ε(ρv, s, ψv) associated to primes v.

Tate proved the existence of the local constants in the case that ρ is 1-dimensional in Tate's thesis. Dwork (1956) proved the existence of the local constant ε(ρv, s, ψv) up to sign. The original proof of the existence of the local constants by Langlands (1970) used local methods and was rather long and complicated, and never published. Deligne (1973) later discovered a simpler proof using global methods.

Properties

The local constants ε(ρ, s, ψE) depend on a representation ρ of the Weil group and a choice of character ψE of the additive group of E. They satisfy the following conditions:

  • If ρ is 1-dimensional then ε(ρ, s, ψE) is the constant associated to it by Tate's thesis as the constant in the functional equation of the local L-function.
  • ε(ρ1⊕ρ2, s, ψE) = ε(ρ1, s, ψE)ε(ρ2, s, ψE). As a result, ε(ρ, s, ψE) can also be defined for virtual representations ρ.
  • If ρ is a virtual representation of dimension 0 and E contains K then ε(ρ, s, ψE) = ε(IndE/Kρ, s, ψK)

Brauer's theorem on induced characters implies that these three properties characterize the local constants.

Deligne (1976) showed that the local constants are trivial for real (orthogonal) representations of the Weil group.

Notational conventions

There are several different conventions for denoting the local constants.

  • The parameter s is redundant and can be combined with the representation ρ, because ε(ρ, s, ψE) = ε(ρ⊗||s, 0, ψE) for a suitable character ||.
  • Deligne includes an extra parameter dx consisting of a choice of Haar measure on the local field. Other conventions omit this parameter by fixing a choice of Haar measure: either the Haar measure that is self dual with respect to ψ (used by Langlands), or the Haar measure that gives the integers of E measure 1. These different conventions differ by elementary terms that are positive real numbers.

References

  1. ^ Kramer, K.; Tunnell, J. (1982). "Elliptic curves and local ϵ-factors". Compositio Mathematica. 46 (3): 307–352.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya