Share to: share facebook share twitter share wa share telegram print page

Lindemann–Weierstrass theorem

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following:

Lindemann–Weierstrass theorem — if α1, ..., αn are algebraic numbers that are linearly independent over the rational numbers , then eα1, ..., eαn are algebraically independent over .

In other words, the extension field has transcendence degree n over .

An equivalent formulation (Baker 1990, Chapter 1, Theorem 1.4), is the following:

An equivalent formulation — If α1, ..., αn are distinct algebraic numbers, then the exponentials eα1, ..., eαn are linearly independent over the algebraic numbers.

This equivalence transforms a linear relation over the algebraic numbers into an algebraic relation over by using the fact that a symmetric polynomial whose arguments are all conjugates of one another gives a rational number.

The theorem is named for Ferdinand von Lindemann and Karl Weierstrass. Lindemann proved in 1882 that eα is transcendental for every non-zero algebraic number α, thereby establishing that π is transcendental (see below).[1] Weierstrass proved the above more general statement in 1885.[2]

The theorem, along with the Gelfond–Schneider theorem, is extended by Baker's theorem,[3] and all of these would be further generalized by Schanuel's conjecture.

Naming convention

The theorem is also known variously as the Hermite–Lindemann theorem and the Hermite–Lindemann–Weierstrass theorem. Charles Hermite first proved the simpler theorem where the αi exponents are required to be rational integers and linear independence is only assured over the rational integers,[4][5] a result sometimes referred to as Hermite's theorem.[6] Although that appears to be a special case of the above theorem, the general result can be reduced to this simpler case. Lindemann was the first to allow algebraic numbers into Hermite's work in 1882.[1] Shortly afterwards Weierstrass obtained the full result,[2] and further simplifications have been made by several mathematicians, most notably by David Hilbert[7] and Paul Gordan.[8]

Transcendence of e and π

The transcendence of e and π are direct corollaries of this theorem.

Suppose α is a non-zero algebraic number; then {α} is a linearly independent set over the rationals, and therefore by the first formulation of the theorem {eα} is an algebraically independent set; or in other words eα is transcendental. In particular, e1 = e is transcendental. (A more elementary proof that e is transcendental is outlined in the article on transcendental numbers.)

Alternatively, by the second formulation of the theorem, if α is a non-zero algebraic number, then {0, α} is a set of distinct algebraic numbers, and so the set {e0eα} = {1, eα} is linearly independent over the algebraic numbers and in particular eα cannot be algebraic and so it is transcendental.

To prove that π is transcendental, we prove that it is not algebraic. If π were algebraic, πi would be algebraic as well, and then by the Lindemann–Weierstrass theorem eπi = −1 (see Euler's identity) would be transcendental, a contradiction. Therefore π is not algebraic, which means that it is transcendental.

A slight variant on the same proof will show that if α is a non-zero algebraic number then sin(α), cos(α), tan(α) and their hyperbolic counterparts are also transcendental.

p-adic conjecture

p-adic Lindemann–Weierstrass Conjecture. — Suppose p is some prime number and α1, ..., αn are p-adic numbers which are algebraic and linearly independent over , such that | αi |p < 1/p for all i; then the p-adic exponentials expp1), . . . , exppn) are p-adic numbers that are algebraically independent over .

Modular conjecture

An analogue of the theorem involving the modular function j was conjectured by Daniel Bertrand in 1997, and remains an open problem.[9] Writing q = e2πiτ for the square of the nome and j(τ) = J(q), the conjecture is as follows.

Modular conjecture — Let q1, ..., qn be non-zero algebraic numbers in the complex unit disc such that the 3n numbers

are algebraically dependent over . Then there exist two indices 1 ≤ i < j ≤ n such that qi and qj are multiplicatively dependent.

Lindemann–Weierstrass theorem

Lindemann–Weierstrass Theorem (Baker's reformulation). — If a1, ..., an are algebraic numbers, and α1, ..., αn are distinct algebraic numbers, then[10]

has only the trivial solution for all

Proof

The proof relies on two preliminary lemmas. Notice that Lemma B itself is already sufficient to deduce the original statement of Lindemann–Weierstrass theorem.

Preliminary lemmas

Lemma A. — Let c(1), ..., c(r) be integers and, for every k between 1 and r, let {γ(k)1, ..., γ(k)m(k)} be the roots of a non-zero polynomial with integer coefficients . If γ(k)i ≠ γ(u)v whenever (ki) ≠ (uv), then

has only the trivial solution for all

Proof of Lemma A. To simplify the notation set:

Then the statement becomes

Let p be a prime number and define the following polynomials:

where is a non-zero integer such that are all algebraic integers. Define[11]

Using integration by parts we arrive at

where is the degree of , and is the j-th derivative of . This also holds for s complex (in this case the integral has to be intended as a contour integral, for example along the straight segment from 0 to s) because

is a primitive of .

Consider the following sum:

In the last line we assumed that the conclusion of the Lemma is false. In order to complete the proof we need to reach a contradiction. We will do so by estimating in two different ways.

First is an algebraic integer which is divisible by p! for and vanishes for unless and , in which case it equals

This is not divisible by p when p is large enough because otherwise, putting

(which is a non-zero algebraic integer) and calling the product of its conjugates (which is still non-zero), we would get that p divides , which is false.

So is a non-zero algebraic integer divisible by (p − 1)!. Now

Since each is obtained by dividing a fixed polynomial with integer coefficients by , it is of the form

where is a polynomial (with integer coefficients) independent of i. The same holds for the derivatives .

Hence, by the fundamental theorem of symmetric polynomials,

is a fixed polynomial with rational coefficients evaluated in (this is seen by grouping the same powers of appearing in the expansion and using the fact that these algebraic numbers are a complete set of conjugates). So the same is true of , i.e. it equals , where G is a polynomial with rational coefficients independent of i.

Finally is rational (again by the fundamental theorem of symmetric polynomials) and is a non-zero algebraic integer divisible by (since the 's are algebraic integers divisible by ). Therefore

However one clearly has:

where Fi is the polynomial whose coefficients are the absolute values of those of fi (this follows directly from the definition of ). Thus

and so by the construction of the 's we have for a sufficiently large C independent of p, which contradicts the previous inequality. This proves Lemma A. ∎

Lemma B. — If b(1), ..., b(n) are integers and γ(1), ..., γ(n), are distinct algebraic numbers, then

has only the trivial solution for all

Proof of Lemma B: Assuming

we will derive a contradiction, thus proving Lemma B.

Let us choose a polynomial with integer coefficients which vanishes on all the 's and let be all its distinct roots. Let b(n + 1) = ... = b(N) = 0.

The polynomial

vanishes at by assumption. Since the product is symmetric, for any the monomials and have the same coefficient in the expansion of P.

Thus, expanding accordingly and grouping the terms with the same exponent, we see that the resulting exponents form a complete set of conjugates and, if two terms have conjugate exponents, they are multiplied by the same coefficient.

So we are in the situation of Lemma A. To reach a contradiction it suffices to see that at least one of the coefficients is non-zero. This is seen by equipping C with the lexicographic order and by choosing for each factor in the product the term with non-zero coefficient which has maximum exponent according to this ordering: the product of these terms has non-zero coefficient in the expansion and does not get simplified by any other term. This proves Lemma B. ∎

Final step

We turn now to prove the theorem: Let a(1), ..., a(n) be non-zero algebraic numbers, and α(1), ..., α(n) distinct algebraic numbers. Then let us assume that:

We will show that this leads to contradiction and thus prove the theorem. The proof is very similar to that of Lemma B, except that this time the choices are made over the a(i)'s:

For every i ∈ {1, ..., n}, a(i) is algebraic, so it is a root of an irreducible polynomial with integer coefficients of degree d(i). Let us denote the distinct roots of this polynomial a(i)1, ..., a(i)d(i), with a(i)1 = a(i).

Let S be the functions σ which choose one element from each of the sequences (1, ..., d(1)), (1, ..., d(2)), ..., (1, ..., d(n)), so that for every 1 ≤ i ≤ n, σ(i) is an integer between 1 and d(i). We form the polynomial in the variables

Since the product is over all the possible choice functions σ, Q is symmetric in for every i. Therefore Q is a polynomial with integer coefficients in elementary symmetric polynomials of the above variables, for every i, and in the variables yi. Each of the latter symmetric polynomials is a rational number when evaluated in .

The evaluated polynomial vanishes because one of the choices is just σ(i) = 1 for all i, for which the corresponding factor vanishes according to our assumption above. Thus, the evaluated polynomial is a sum of the form

where we already grouped the terms with the same exponent. So in the left-hand side we have distinct values β(1), ..., β(N), each of which is still algebraic (being a sum of algebraic numbers) and coefficients . The sum is nontrivial: if is maximal in the lexicographic order, the coefficient of is just a product of a(i)j's (with possible repetitions), which is non-zero.

By multiplying the equation with an appropriate integer factor, we get an identical equation except that now b(1), ..., b(N) are all integers. Therefore, according to Lemma B, the equality cannot hold, and we are led to a contradiction which completes the proof. ∎

Note that Lemma A is sufficient to prove that e is irrational, since otherwise we may write e = p / q, where both p and q are non-zero integers, but by Lemma A we would have qe − p ≠ 0, which is a contradiction. Lemma A also suffices to prove that π is irrational, since otherwise we may write π = k / n, where both k and n are integers) and then ±iπ are the roots of n2x2 + k2 = 0; thus 2 − 1 − 1 = 2e0 + eiπ + eiπ ≠ 0; but this is false.

Similarly, Lemma B is sufficient to prove that e is transcendental, since Lemma B says that if a0, ..., an are integers not all of which are zero, then

Lemma B also suffices to prove that π is transcendental, since otherwise we would have 1 + eiπ ≠ 0.

Equivalence of the two statements

Baker's formulation of the theorem clearly implies the first formulation. Indeed, if are algebraic numbers that are linearly independent over , and

is a polynomial with rational coefficients, then we have

and since are algebraic numbers which are linearly independent over the rationals, the numbers are algebraic and they are distinct for distinct n-tuples . So from Baker's formulation of the theorem we get for all n-tuples .

Now assume that the first formulation of the theorem holds. For Baker's formulation is trivial, so let us assume that , and let be non-zero algebraic numbers, and distinct algebraic numbers such that:

As seen in the previous section, and with the same notation used there, the value of the polynomial

at

has an expression of the form

where we have grouped the exponentials having the same exponent. Here, as proved above, are rational numbers, not all equal to zero, and each exponent is a linear combination of with integer coefficients. Then, since and are pairwise distinct, the -vector subspace of generated by is not trivial and we can pick to form a basis for For each , we have

For each let be the least common multiple of all the for , and put . Then are algebraic numbers, they form a basis of , and each is a linear combination of the with integer coefficients. By multiplying the relation

by , where is a large enough positive integer, we get a non-trivial algebraic relation with rational coefficients connecting , against the first formulation of the theorem.

Related result

A variant of Lindemann–Weierstrass theorem in which the algebraic numbers are replaced by the transcendental Liouville numbers (or in general, the U numbers) is also known.[12]

See also

Notes

  1. ^ a b Lindemann 1882a, Lindemann 1882b.
  2. ^ a b Weierstrass 1885, pp. 1067–1086,
  3. ^ (Murty & Rath 2014)
  4. ^ Hermite 1873, pp. 18–24.
  5. ^ Hermite 1874
  6. ^ Gelfond 2015.
  7. ^ Hilbert 1893, pp. 216–219.
  8. ^ Gordan 1893, pp. 222–224.
  9. ^ Bertrand 1997, pp. 339–350.
  10. ^ (in French) french Proof's Lindemann-Weierstrass (pdf)[dead link]
  11. ^ Up to a factor, this is the same integral appearing in the proof that e is a transcendental number, where β1 = 1, ..., βm = m. The rest of the proof of the Lemma is analog to that proof.
  12. ^ Chalebgwa, Prince Taboka; Morris, Sidney A. (2022). "Sin, Cos, Exp, and Log of Liouville Numbers". arXiv:2202.11293v1 [math.NT].

References

Further reading

External links

Read more information:

Juan de TorquemadaFray Juan de Torquemada, dari Historia de la República Mexicana (1860) karya Lucas Alamán Informasi pribadiLahirJuans. 1562Torquemada, Palencia, Kerajaan SpanyolMeninggal1624 – 1562; umur -63–-62 tahunkonven Tlatelolco, Spanyol BaruAgamaGereja KatolikKarya terkenalarsitek, insinyur, sejarawanOrdoFransiskan(1579–1624)Kedudukan seniorLama menjabat1614-1617PenerusJuan LópezPenahbisans. 1587 Juan de Torquemada (s. 1562 – 1624) adalah seorang frater Fran…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Chin Iee-chong – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak di…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Tonjolan (bahasa Inggris: panhandle, salient atau bootheel) adalah tonjolan memanjang dari suatu entitas geopolitik, seperti entitas sub-nasional atau negara berdaulat. Peta Namibia yang menunjukkan Jalur Caprivi di timur laut negara ini. Walau bentu…

International basketball team The United States men's national basketball team competed in the 2023 FIBA Basketball World Cup and finished in fourth place. They held training camp in early August and scheduled five exhibition games before their World Cup opener at the end of the month in Manila.[1] The Americans were 4–1 during group play, qualifying for the final round. They lost in the semifinals as well as the bronze medal game. They were one of the top two World Cup finishers in th…

1992 deaths in South Dakota, United States Deaths of Arnold Archambeau and Ruby BruguierArchambeau (left) and BruguierDateDecember 12, 1992 – March 10, 1993 (1992-12-12 – 1993-03-10)TimeUnknownLocationNear Lake Andes, South Dakota, U.S.Coordinates43°08′59″N 98°31′19″W / 43.1497°N 98.5219°W / 43.1497; -98.5219CauseHypothermia; manner undeterminedBurialNative American Cemetery; Greenwood, South Dakota (Bruguier) Just before…

André Schürrle Informasi pribadiNama lengkap André Horst Schürrle[1]Tanggal lahir 6 November 1990 (umur 33)Tempat lahir Ludwigshafen, JermanTinggi 1,84 m (6 ft 1⁄2 in)Posisi bermain PenyerangKarier junior1996–2006 Ludwigshafener SC2006–2009 Mainz 05Karier senior*Tahun Tim Tampil (Gol)2009–2011 Mainz 05 66 (20)2011–2013 Bayer Leverkusen 65 (18)2013–2015 Chelsea 44 (11)2015–2016 VfL Wolfsburg 43 (10)2016–2020 Borussia Dortmund 33 (3)2018–2019 …

Chevrolet Sail2010 Chevrolet Sail generasi keduaInformasiProdusenShanghai-GMMasa produksi2001–sekarangBodi & rangkaKelasSuperminiTata letakMesin depan, penggerak roda depan Chevrolet Sail adalah mobil yang diproduksi oleh Shanghai General Motors.[1] Diluncurkan tahun 2001, mobil ini awalnya dijual dengan nama Buick Sail, dijual dalam bentuk sedan dan wagon dengan basis Opel Corsa B. Sejak merek Chevrolet diperkenalkan di China tahun 2005, mobil ini dijual dengan nama Chevrolet Sail…

Invasi Mongol ke KoreaTanggal1231-1273LokasiSemenanjung KoreaHasil Kapitulasi Dinasti GoryeoPihak terlibat Dinasti Goryeo Korea Kekaisaran MongolTokoh dan pemimpin Choe UPark SeoKim Yun-huBae JungsonKim Tong-jeong Ögedei KhanMongke KhanSalietaiJalairtai Bagian dari seri mengenai Sejarah Korea Prasejarah Zaman Jeulmun Zaman Mumun Kuno Gojoseon 2333 SM - 108 SM Jin Proto Tiga Kerajaan Buyeo Goguryeo Okjeo Dongye Samhan Mahan Byeon Jin Empat Jun di Dinasti Han Tiga Kerajaan Goguryeo 37 SM – 668 …

Jet dari pusat galaksi elips, M87, ditenagai olrh lubang hitam supermasif di pusatnya. Emisi sinar-X di sekitar nebula kepiting menunjukkan dua pancaran materi dan antimateri yang didukung oleh pulsar. Jet astrofisika adalah berkas materi kolimasi yang dikeluarkan dari beberapa objek astronomi.[1] Mereka mengalir dari sebagian besar objek padat yang berputar dan/atau menambah materi dari lingkungannya. Proses fisika plasma mengatur transfer energi antara komponen gravitasi, kinetik, term…

Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Asep Syarifudin – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Asep Syarifudin Bupati Administrasi Kepulauan Se…

  لمعانٍ أخرى، طالع بلاك هوك (توضيح). بلاك هوك     الإحداثيات 39°48′11″N 105°29′31″W / 39.8031°N 105.492°W / 39.8031; -105.492  [1] تاريخ التأسيس 1859  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة غيلبين  خصائص جغرافية  المساحة 7.07652 كي…

3rd-century Spanish saint SaintEulalia of MéridaImage of Santa Eulalia in Merida CathedralVirgin martyrBornc. AD 290Mérida, SpainDiedc. AD 304MéridaVenerated inCatholic Church, Eastern Orthodox ChurchCanonized304Major shrineCathedral of San SalvadorFeast10 DecemberAttributescross, stake, and dovePatronageMérida, Spain; Oviedo, Spain; runaways; torture victims; widows; inclement weather[1] Eulalia of Mérida (Augusta Emerita in 292 - Augusta Emerita 10 December, 304) was a young …

Kodim 0606/BogorLambang Korem 061/SuryakusumaDibentukTahun 1962Negara IndonesiaAliansiKorem 061/SKCabangTNI Angkatan DaratTipe unitKodim Tipe APeranSatuan TeritorialMakodimBogorPelindungTentara Nasional IndonesiaMotoSuryakusumaBaret H I J A U Situs webwww.korem061suryakancana.mil.idTokohKomandanKolonel Inf. Fikri FerdianKepala Staf- Komando Distrik Militer 0606/Kota Bogor Merupakan kesatuan kewilayahan yang berada di bawah komando Korem 061/Surya Kancana yang bertugas menyelenggar…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Desa – berita · surat kabar · buku · cendekiawan · JSTOR (Maret 2019) Untuk kegunaan lain, lihat Desa (disambiguasi). Halaman ini berisi artikel tentang satuan daerah dalam pengertian umum. Untuk satuan administ…

George Tsypin George Tsypin is an American stage designer, sculptor and architect. He was an artistic director, production designer and coauthor of the script for the Opening Ceremony of the Olympic Games in Sochi in 2014. Early life and education Tsypin was born in Kazgorodok, Kazakhstan (former Soviet Union), where his parents were in internal exile after being released from GULAG as political prisoners.[1] He studied architecture in Moscow and theater design at NYU in New York. Career…

Fort-de-FranceIbu kota, perfektur, dan komunePemandangan beberapa kapal yang datang dari Les Trois-Îlets Lambang kebesaranLokasi dari komune (bertanda merah) di dalam MartinikKoordinat: 14°36′00″N 61°04′00″W / 14.60000°N 61.06667°W / 14.60000; -61.06667Koordinat: 14°36′00″N 61°04′00″W / 14.60000°N 61.06667°W / 14.60000; -61.06667NegaraPrancisWilayah dan departemen luar negeriMartinikArondisemenFort-de-FranceAntarkomuneCA Ce…

العلاقات الألمانية اللاتفية ألمانيا لاتفيا   ألمانيا   لاتفيا تعديل مصدري - تعديل   العلاقات الألمانية اللاتفية هي العلاقات الثنائية التي تجمع بين ألمانيا ولاتفيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة …

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Let Me Live Rudimental and Major Lazer song – news · newspapers · books · scholar · JSTOR (June 2018) (Learn how and when to remove this template message) 2018 single by Rudimental and Major Lazer featuring Anne-Marie and Mr EaziLet Me LiveSingle by Rudimenta…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2011) (Learn how and when to remove this template message) This article relies largely or entirely on a single source. Relevant discussion may be found …

ShiraklogoNama lengkapShirak Football ClubBerdiri1958StadionGyumri City Stadium Gyumri, Shirak(Kapasitas: 3000)KetuaArman SahakyanManajerVardan BichakhchyanLigaArmenian Premier League2022/23ke-7Situs webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Shirak Football Club (bahasa Armenia: Շիրակ Ֆուտբոլային Ակումբ), adalah tim sepak bola profesional asal Armenia yang berasal dari Gyumri, Shirak. Tim kini berkompetisi di Liga Utama Armenia. Titel Arme…

Kembali kehalaman sebelumnya