Share to: share facebook share twitter share wa share telegram print page

Lucas pseudoprime

Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence.

Baillie-Wagstaff-Lucas pseudoprimes

Baillie and Wagstaff define Lucas pseudoprimes as follows:[1] Given integers P and Q, where P > 0 and , let Uk(P, Q) and Vk(P, Q) be the corresponding Lucas sequences.

Let n be a positive integer and let be the Jacobi symbol. We define

If n is a prime that does not divide Q, then the following congruence condition holds:

(1)

If this congruence does not hold, then n is not prime. If n is composite, then this congruence usually does not hold.[1] These are the key facts that make Lucas sequences useful in primality testing.

The congruence (1) represents one of two congruences defining a Frobenius pseudoprime. Hence, every Frobenius pseudoprime is also a Baillie-Wagstaff-Lucas pseudoprime, but the converse does not always hold.

Some good references are chapter 8 of the book by Bressoud and Wagon (with Mathematica code),[2] pages 142–152 of the book by Crandall and Pomerance,[3] and pages 53–74 of the book by Ribenboim.[4]

Lucas probable primes and pseudoprimes

A Lucas probable prime for a given (P, Q) pair is any positive integer n for which equation (1) above is true (see,[1] page 1398).

A Lucas pseudoprime for a given (P, Q) pair is a positive composite integer n for which equation (1) is true (see,[1] page 1391).

A Lucas probable prime test is most useful if D is chosen such that the Jacobi symbol is −1 (see pages 1401–1409 of,[1] page 1024 of, [5] or pages 266–269 of [2] ). This is especially important when combining a Lucas test with a strong pseudoprime test, such as the Baillie–PSW primality test. Typically implementations will use a parameter selection method that ensures this condition (e.g. the Selfridge method recommended in [1] and described below).

If then equation (1) becomes

(2)

If congruence (2) is false, this constitutes a proof that n is composite.

If congruence (2) is true, then n is a Lucas probable prime. In this case, either n is prime or it is a Lucas pseudoprime. If congruence (2) is true, then n is likely to be prime (this justifies the term probable prime), but this does not prove that n is prime. As is the case with any other probabilistic primality test, if we perform additional Lucas tests with different D, P and Q, then unless one of the tests proves that n is composite, we gain more confidence that n is prime.

Examples: If P = 3, Q = −1, and D = 13, the sequence of U's is OEISA006190: U0 = 0, U1 = 1, U2 = 3, U3 = 10, etc.

First, let n = 19. The Jacobi symbol is −1, so δ(n) = 20, U20 = 6616217487 = 19·348221973 and we have

Therefore, 19 is a Lucas probable prime for this (P, Q) pair. In this case 19 is prime, so it is not a Lucas pseudoprime.

For the next example, let n = 119. We have = −1, and we can compute

However, 119 = 7·17 is not prime, so 119 is a Lucas pseudoprime for this (P, Q) pair. In fact, 119 is the smallest pseudoprime for P = 3, Q = −1.

We will see below that, in order to check equation (2) for a given n, we do not need to compute all of the first n + 1 terms in the U sequence.

Let Q = −1, the smallest Lucas pseudoprime to P = 1, 2, 3, ... are

323, 35, 119, 9, 9, 143, 25, 33, 9, 15, 123, 35, 9, 9, 15, 129, 51, 9, 33, 15, 21, 9, 9, 49, 15, 39, 9, 35, 49, 15, 9, 9, 33, 51, 15, 9, 35, 85, 39, 9, 9, 21, 25, 51, 9, 143, 33, 119, 9, 9, 51, 33, 95, 9, 15, 301, 25, 9, 9, 15, 49, 155, 9, 399, 15, 33, 9, 9, 49, 15, 119, 9, ...

Strong Lucas pseudoprimes

Now, factor into the form where is odd.

A strong Lucas pseudoprime for a given (P, Q) pair is an odd composite number n with GCD(n, D) = 1, satisfying one of the conditions

or

for some 0 ≤ r < s; see page 1396 of.[1] A strong Lucas pseudoprime is also a Lucas pseudoprime (for the same (P, Q) pair), but the converse is not necessarily true. Therefore, the strong test is a more stringent primality test than equation (1).

There are infinitely many strong Lucas pseudoprimes, and therefore, infinitely many Lucas pseudoprimes. Theorem 7 in [1] states: Let and be relatively prime positive integers for which is positive but not a square. Then there is a positive constant (depending on and ) such that the number of strong Lucas pseudoprimes not exceeding is greater than , for sufficiently large.

We can set Q = −1, then and are P-Fibonacci sequence and P-Lucas sequence, the pseudoprimes can be called strong Lucas pseudoprime in base P, for example, the least strong Lucas pseudoprime with P = 1, 2, 3, ... are 4181, 169, 119, ...

An extra strong Lucas pseudoprime [6] is a strong Lucas pseudoprime for a set of parameters (P, Q) where Q = 1, satisfying one of the conditions

or

for some . An extra strong Lucas pseudoprime is also a strong Lucas pseudoprime for the same pair.

Implementing a Lucas probable prime test

Before embarking on a probable prime test, one usually verifies that n, the number to be tested for primality, is odd, is not a perfect square, and is not divisible by any small prime less than some convenient limit. Perfect squares are easy to detect using Newton's method for square roots.

We choose a Lucas sequence where the Jacobi symbol , so that δ(n) = n + 1.

Given n, one technique for choosing D is to use trial and error to find the first D in the sequence 5, −7, 9, −11, ... such that . Note that . (If D and n have a prime factor in common, then ). With this sequence of D values, the average number of D values that must be tried before we encounter one whose Jacobi symbol is −1 is about 1.79; see,[1] p. 1416. Once we have D, we set and . It is a good idea to check that n has no prime factors in common with P or Q. This method of choosing D, P, and Q was suggested by John Selfridge.

(This search will never succeed if n is square, and conversely if it does succeed, that is proof that n is not square. Thus, some time can be saved by delaying testing n for squareness until after the first few search steps have all failed.)

Given D, P, and Q, there are recurrence relations that enable us to quickly compute and in steps; see Lucas sequence § Other relations. To start off,

First, we can double the subscript from to in one step using the recurrence relations

.

Next, we can increase the subscript by 1 using the recurrences

.

If is odd, replace it with ; this is even so it can now be divided by 2. The numerator of is handled in the same way. (Adding n does not change the result modulo n.) Observe that, for each term that we compute in the U sequence, we compute the corresponding term in the V sequence. As we proceed, we also compute the same, corresponding powers of Q.

At each stage, we reduce , , and the power of , mod n.

We use the bits of the binary expansion of n to determine which terms in the U sequence to compute. For example, if n+1 = 44 (= 101100 in binary), then, taking the bits one at a time from left to right, we obtain the sequence of indices to compute: 12 = 1, 102 = 2, 1002 = 4, 1012 = 5, 10102 = 10, 10112 = 11, 101102 = 22, 1011002 = 44. Therefore, we compute U1, U2, U4, U5, U10, U11, U22, and U44. We also compute the same-numbered terms in the V sequence, along with Q1, Q2, Q4, Q5, Q10, Q11, Q22, and Q44.

By the end of the calculation, we will have computed Un+1, Vn+1, and Qn+1, (mod n). We then check congruence (2) using our known value of Un+1.

When D, P, and Q are chosen as described above, the first 10 Lucas pseudoprimes are (see page 1401 of [1]): 323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, and 10877 (sequence A217120 in the OEIS)

The strong versions of the Lucas test can be implemented in a similar way.

When D, P, and Q are chosen as described above, the first 10 strong Lucas pseudoprimes are: 5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, and 58519 (sequence A217255 in the OEIS)

To calculate a list of extra strong Lucas pseudoprimes, set . Then try P = 3, 4, 5, 6, ..., until a value of is found so that the Jacobi symbol . With this method for selecting D, P, and Q, the first 10 extra strong Lucas pseudoprimes are 989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059, and 72389 (sequence A217719 in the OEIS)

Checking additional congruence conditions

If we have checked that congruence (2) is true, there are additional congruence conditions we can check that have almost no additional computational cost. If n happens to be composite, these additional conditions may help discover that fact.

If n is an odd prime and , then we have the following (see equation 2 on page 1392 of [1]):

(3)

Although this congruence condition is not, by definition, part of the Lucas probable prime test, it is almost free to check this condition because, as noted above, the value of Vn+1 was computed in the process of computing Un+1.

If either congruence (2) or (3) is false, this constitutes a proof that n is not prime. If both of these congruences are true, then it is even more likely that n is prime than if we had checked only congruence (2).

If Selfridge's method (above) for choosing D, P, and Q happened to set Q = −1, then we can adjust P and Q so that D and remain unchanged and P = Q = 5 (see Lucas sequence-Algebraic relations). If we use this enhanced method for choosing P and Q, then 913 = 11·83 is the only composite less than 108 for which congruence (3) is true (see page 1409 and Table 6 of;[1]). More extensive calculations show that, with this method of choosing D, P, and Q, there are only five odd, composite numbers less than 1015 for which congruence (3) is true.[7]

If , then a further congruence condition that involves very little additional computation can be implemented.

Recall that is computed during the calculation of , and we can easily save the previously computed power of , namely, .

If n is prime, then, by Euler's criterion,

.

(Here, is the Legendre symbol; if n is prime, this is the same as the Jacobi symbol).

Therefore, if n is prime, we must have,

(4)

The Jacobi symbol on the right side is easy to compute, so this congruence is easy to check. If this congruence does not hold, then n cannot be prime. Provided GCD(n, Q) = 1 then testing for congruence (4) is equivalent to augmenting our Lucas test with a "base Q" Solovay–Strassen primality test.

Additional congruence conditions that must be satisfied if n is prime are described in Section 6 of.[1] If any of these conditions fails to hold, then we have proved that n is not prime.

Comparison with the Miller–Rabin primality test

k applications of the Miller–Rabin primality test declare a composite n to be probably prime with a probability at most (1/4)k.

There is a similar probability estimate for the strong Lucas probable prime test.[8]

Aside from two trivial exceptions (see below), the fraction of (P,Q) pairs (modulo n) that declare a composite n to be probably prime is at most (4/15).

Therefore, k applications of the strong Lucas test would declare a composite n to be probably prime with a probability at most (4/15)k.

There are two trivial exceptions. One is n = 9. The other is when n = p(p+2) is the product of two twin primes. Such an n is easy to factor, because in this case, n+1 = (p+1)2 is a perfect square. One can quickly detect perfect squares using Newton's method for square roots.

By combining a Lucas pseudoprime test with a Fermat primality test, say, to base 2, one can obtain very powerful probabilistic tests for primality, such as the Baillie–PSW primality test.

Fibonacci pseudoprimes

When P = 1 and Q = −1, the Un(P,Q) sequence represents the Fibonacci numbers.

A Fibonacci pseudoprime is often[2]: 264,  [3]: 142,  [4]: 127  defined as a composite number n not divisible by 5 for which congruence (1) holds with P = 1 and Q = −1. By this definition, the Fibonacci pseudoprimes form a sequence:

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, ... (sequence A081264 in the OEIS).

The references of Anderson and Jacobsen below use this definition.

If n is congruent to 2 or 3 modulo 5, then Bressoud,[2]: 272–273  and Crandall and Pomerance[3]: 143, 168  point out that it is rare for a Fibonacci pseudoprime to also be a Fermat pseudoprime base 2. However, when n is congruent to 1 or 4 modulo 5, the opposite is true, with over 12% of Fibonacci pseudoprimes under 1011 also being base-2 Fermat pseudoprimes.

If n is prime and GCD(n, Q) = 1, then we also have[1]: 1392 

(5)

This leads to an alternative definition of Fibonacci pseudoprime:[9][10]

a Fibonacci pseudoprime is a composite number n for which congruence (5) holds with P = 1 and Q = −1.

This definition leads the Fibonacci pseudoprimes form a sequence:

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, ... (sequence A005845 in the OEIS),

which are also referred to as Bruckman-Lucas pseudoprimes.[4]: 129  Hoggatt and Bicknell studied properties of these pseudoprimes in 1974.[11] Singmaster computed these pseudoprimes up to 100000.[12] Jacobsen lists all 111443 of these pseudoprimes less than 1013.[13]

It has been shown that there are no even Fibonacci pseudoprimes as defined by equation (5).[14][15] However, even Fibonacci pseudoprimes do exist (sequence A141137 in the OEIS) under the first definition given by (1).

A strong Fibonacci pseudoprime is a composite number n for which congruence (5) holds for Q = −1 and all P.[16] It follows[16]: 460  that an odd composite integer n is a strong Fibonacci pseudoprime if and only if:

  1. n is a Carmichael number
  2. 2(p + 1) | (n − 1) or 2(p + 1) | (np) for every prime p dividing n.

The smallest example of a strong Fibonacci pseudoprime is 443372888629441 = 17·31·41·43·89·97·167·331.

Pell pseudoprimes

A Pell pseudoprime may be defined as a composite number n for which equation (1) above is true with P = 2 and Q = −1; the sequence Un then being the Pell sequence. The first pseudoprimes are then 35, 169, 385, 779, 899, 961, 1121, 1189, 2419, ...

This differs from the definition in OEISA099011 which may be written as:

with (P, Q) = (2, −1) again defining Un as the Pell sequence. The first pseudoprimes are then 169, 385, 741, 961, 1121, 2001, 3827, 4879, 5719, 6215 ...

A third definition uses equation (5) with (P, Q) = (2, −1), leading to the pseudoprimes 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, ...

References

  1. ^ a b c d e f g h i j k l m n Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980). "Lucas Pseudoprimes" (PDF). Mathematics of Computation. 35 (152): 1391–1417. doi:10.1090/S0025-5718-1980-0583518-6. JSTOR 2006406. MR 0583518.
  2. ^ a b c d David Bressoud; Stan Wagon (2000). A Course in Computational Number Theory. New York: Key College Publishing in cooperation with Springer. ISBN 978-1-930190-10-8.
  3. ^ a b c Richard E. Crandall; Carl Pomerance (2005). Prime numbers: A computational perspective (2nd ed.). Springer-Verlag. ISBN 0-387-25282-7.
  4. ^ a b c Paulo Ribenboim (1996). The New Book of Prime Number Records. Springer-Verlag. ISBN 0-387-94457-5.
  5. ^ Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff, Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7. JSTOR 2006210.
  6. ^ Jon Grantham (2001). "Frobenius Pseudoprimes". Mathematics of Computation. 70 (234): 873–891. arXiv:1903.06820. Bibcode:2001MaCom..70..873G. doi:10.1090/S0025-5718-00-01197-2. MR 1680879.
  7. ^ Robert Baillie; Andrew Fiori; Samuel S. Wagstaff, Jr. (July 2021). "Strengthening the Baillie-PSW Primality Test". Mathematics of Computation. 90 (330): 1931–1955. arXiv:2006.14425. doi:10.1090/mcom/3616. S2CID 220055722.
  8. ^ F. Arnault (April 1997). "The Rabin-Monier Theorem for Lucas Pseudoprimes". Mathematics of Computation. 66 (218): 869–881. CiteSeerX 10.1.1.192.4789. doi:10.1090/s0025-5718-97-00836-3.
  9. ^ Adina Di Porto; Piero Filipponi (1989). "More on the Fibonacci Pseudoprimes" (PDF). Fibonacci Quarterly. 27 (3): 232–242.
  10. ^ Di Porto, Adina; Filipponi, Piero; Montolivo, Emilio (1990). "On the generalized Fibonacci pseudoprimes". Fibonacci Quarterly. 28: 347–354. CiteSeerX 10.1.1.388.4993.
  11. ^ V. E. Hoggatt, Jr.; Marjorie Bicknell (September 1974). "Some Congruences of the Fibonacci Numbers Modulo a Prime p". Mathematics Magazine. 47 (4): 210–214. doi:10.2307/2689212. JSTOR 2689212.
  12. ^ David Singmaster (1983). "Some Lucas Pseudoprimes". Abstracts Amer. Math. Soc. 4 (83T–10–146): 197.
  13. ^ "Pseudoprime Statistics and Tables". Retrieved 5 May 2019.
  14. ^ P. S. Bruckman (1994). "Lucas Pseudoprimes are odd". Fibonacci Quarterly. 32: 155–157.
  15. ^ Di Porto, Adina (1993). "Nonexistence of Even Fibonacci Pseudoprimes of the First Kind". Fibonacci Quarterly. 31: 173–177. CiteSeerX 10.1.1.376.2601.
  16. ^ a b Müller, Winfried B.; Oswald, Alan (1993). "Generalized Fibonacci Pseudoprimes and Probable Primes". In G.E. Bergum; et al. (eds.). Applications of Fibonacci Numbers. Vol. 5. Kluwer. pp. 459–464. doi:10.1007/978-94-011-2058-6_45.

Read other articles:

Freedom Tower beralih ke halaman ini. Untuk kegunaan lain, lihat Freedom Tower (disambiguasi). Untuk komplek bangunan yang hancur pada serangan 11 September, lihat World Trade Center. Untuk gedung One World Trade Center lama, lihat Daftar penyewa tempat di One World Trade Center. One World Trade CenterBerkas:One World Trade Center logo.svgOne World Trade Center, pencakar langit tertinggi di Belahan Bumi BaratInformasi umumStatusSelesaiJenisPerkantoranObservasiKomunikasiGaya arsitekturModernLokas…

2011 book by Jack Halberstam The Queer Art of Failure First editionAuthorJack HalberstamPublisherDuke University PressPublication date2011Pages224ISBN978-0-8223-5045-3 The Queer Art of Failure is a 2011 book of queer theory by Jack Halberstam. In it, Halberstam argues that failure can be a productive way of critiquing capitalism and heteronormativity. Using examples from popular culture, like Pixar animated films, Halberstam explores alternatives to individualism and conformity. Summary Introduc…

Questa voce sull'argomento centri abitati dell'Ohio è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. WarrencityWarren – VedutaWomens Park LocalizzazioneStato Stati Uniti Stato federato Ohio ConteaTrumbull AmministrazioneSindacoMichael J. O'Brien TerritorioCoordinate41°14′18″N 80°48′52″W / 41.238333°N 80.814444°W41.238333; -80.814444 (Warren)Coordinate: 41°14′18…

General MillsJenisPublik (NYSE: GIS)IndustriPanganKantorpusatMinneapolis, Minessota, Amerika SerikatWilayah operasiSeluruh duniaTokohkunciKendall J. Powell(CEO)Pendapatan$17.774 jutaTotal aset$22.658 jutaSitus webwww.generalmills.com General Mills (NYSE: GIS) adalah sebuah perusahaan publik asal Amerika Serikat yang bergerak di industri pangan.[1] Saat ini, markas pusat General Mills terletak di 1 General Mills Blvd., Minneapolis, Minessota, dan dipimpin oleh CEO Kendall J. Powell.[1…

Municipal City in Yeongnam, South KoreaTongyeong 통영시Municipal CityKorean transcription(s) • Hangul통영시 • Hanja統營市 • Revised RomanizationTongyeong-si • McCune-ReischauerT'ongyŏng-siTop: Hallyeo National Marine Park; middle left: Hallyeo Waterway Observation Cable Car; middle center: Turtle ship replica; middle right: Dongpirang Village; bottom left: Chungmusa shrineJungang; bottom right Live Fish Market. FlagEmblem of Tongyeon…

About You NowAlbum mini karya Miranda CosgroveDirilisFebruary 3, 2009[1]Direkam2007-2009GenreElectropop, dance-pop, pop-rockDurasi15:47LabelNickelodeon, ColumbiaProduserThe Matrix, Dr. Luke, Max MartinKronologi Miranda Cosgrove iCarly(2008)iCarly2008 About You Now (2009) Sparks Fly (2010)Sparks Fly2010 Singel dalam album About You Now About You NowDirilis: February 5, 2009 About You Now adalah album mini debut dari penyanyi-penulis lagu Amerika Serikat, Miranda Cosgrove. Album ini di…

Basilika Bunda Maria Diangkat ke Surga dan Santo Markus Penginjil di Biara ReichenauBasilika Minor Bunda Maria Diangkat ke Surga dan Santo Markus Penginjil di Biara ReichenauJerman: Klosterkirche Münster St. Maria und Markuscode: de is deprecated Basilika Bunda Maria Diangkat ke Surga dan Santo Markus Penginjil di Biara ReichenauLokasiReichenauNegara JermanDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Bunda Maria Diangkat ke Surga dan Santo Mark…

Slovenian footballer (born 1989) Jasmin Kurtić Kurtić in 2018Personal informationDate of birth (1989-01-10) 10 January 1989 (age 35)[1]Place of birth Črnomelj, SR Slovenia, SFR YugoslaviaHeight 1.86 m (6 ft 1 in)[2]Position(s) MidfielderTeam informationCurrent team SüdtirolNumber 27Youth career1999–2007 Bela KrajinaSenior career*Years Team Apps (Gls)2007–2010 Bela Krajina 74 (7)2010 Gorica 15 (0)2011–2013 Palermo 35 (1)2011–2012 → Varese (loan) 3…

Papa Romano114º papa della Chiesa cattolicaElezioneagosto 897 Insediamentoagosto 897 Fine pontificatonovembre 897 Predecessorepapa Stefano VI Successorepapa Teodoro II  NascitaGallese, ? Morte? SepolturaAntica basilica di San Pietro in Vaticano Manuale Romano (Gallese, ... – ...; fl. IX secolo) è stato il 114º papa della Chiesa cattolica dall'agosto al novembre dell'897. Indice 1 Biografia 1.1 Origini 1.2 Un brevissimo pontificato 2 Note 3 Bibliografia 4 Altri progetti 5 Collegame…

Eric Maxim Choupo-Moting Informasi pribadiNama lengkap Jean-Eric Maxim Choupo-Moting[1]Tanggal lahir 23 Maret 1989 (umur 35)Tempat lahir Hamburg, Jerman Barat[2]Tinggi 191 cm (6 ft 3 in)[3][4]Posisi bermain PenyerangInformasi klubKlub saat ini Bayern MünchenNomor 13Karier junior1995–2000 Teutonia 052000–2003 Altona 932003–2004 FC St. Pauli2004–2007 Hamburger SVKarier senior*Tahun Tim Tampil (Gol)2007–2011 Hamburger SV II 31 (1)2007…

Vágner Rogério Nunes Nazionalità  Brasile Altezza 176 cm Peso 72 kg Calcio Ruolo Centrocampista Termine carriera 2005 Carriera Giovanili 198?-1988Arapongas Squadre di club1 1989 Arapongas? (?)1990-1993 Paulista? (?)1993-1995 União São João33 (3)1995-1997 Santos33 (5)1997-1998 Roma11 (0)1998-1999→ Vasco da Gama12 (0)2000→ San Paolo15 (4)2000-2004 Celta Vigo89 (6)2005 Atlético Mineiro0 (0) Nazionale 2001 Brasile1 (0)[1] 1 I due n…

Ski jumping tournament held in Norway For the current tournament, see Raw Air 2023. Raw AirGenreski jumpingski flyingLocation(s) Oslo (5 rounds) Lillehammer (3 rounds) Trondheim (3 rounds) Vikersund (5 rounds)Inaugurated10 March 2017 (Men)9 March 2019 (Women)FounderArne ÅbråtenOrganised byInternational Ski Federation Raw Air is a series of ski jumping competitions in ski jumping and ski flying in venues across Norway, taking place starting from the 2016–17 season. Founded by Arne Åbråten, …

RamGeographicdistributioncentral Sandaun Province, Papua New GuineaLinguistic classificationSepikUpper SepikRamSubdivisions Karawa Pouye Awtuw Glottologramm1241The Sepik languages as classified by Foley (2018) The Ram languages are a small group of 3 languages spoken in Sandaun Province, Papua New Guinea. They are spoken directly to the northeast of the Yellow River languages and directly to the south of the Wapei languages, both of which are also Sepik groups. Ram is the word for 'man' in the l…

Untuk cucunya, lihat Henrik dari Denmark. Pangeran HenrikPangeran Henrik di acara pernikahan Victoria, Putri Mahkota Swedia, dan Daniel Westling, 19 Juni 2010Pendamping penguasa DenmarkPeriode14 Januari 1972 – 13 Februari 2018(46 tahun, 30 hari)PendahuluRatu IngridPenerusRatu Mary DonaldsonInformasi pribadiKelahiranHenri Marie Jean André de Laborde de Monpezat(1934-06-11)11 Juni 1934Talence, Gironde, PrancisKematian13 Februari 2018(2018-02-13) (umur 83)Istana Fredensborg, …

Cet article est une ébauche concernant un saint. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Druon de Sebourg Statue de saint Druon dans l'église Saint-Druon de Sebourg. Saint, pèlerin, ermite Naissance 1118Épinoy (aujourd'hui quartier de Carvin) Décès 1186  (vers 70 ans) Sebourg Vénéré à Sebourg, Nord de la France, Pas-de-Calais, Belgique Vénéré par Église catholique, Communion anglicane, Ég…

† Стеллерова корова Муляж стеллеровой коровы в Лондонском музее естествознания Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстноро…

Questa voce o sezione sull'argomento storia è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. Чрезвычайная комиссияČrezvyča…

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) 土…

City in North Dakota, United StatesLisbon, North DakotaCityRansom County Courthouse in LisbonMotto: A Place to Call Home!Location of Lisbon, North DakotaCoordinates: 46°26′19″N 97°41′03″W / 46.43861°N 97.68417°W / 46.43861; -97.68417CountryUnited StatesStateNorth DakotaCountyRansomFounded1880Government • MayorTim MeyerArea[1] • Total2.29 sq mi (5.94 km2) • Land2.29 sq mi (5.94 km2)&…

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府與…

Kembali kehalaman sebelumnya