Positive integers with specific properties
In number theory , a noncototient is a positive integer n that cannot be expressed as the difference between a positive integer m and the number of coprime integers below it. That is, m − φ (m ) = n , where φ stands for Euler's totient function , has no solution for m . The cototient of n is defined as n − φ (n ) , so a noncototient is a number that is never a cototient.
It is conjectured that all noncototients are even. This follows from a modified form of the slightly stronger version of the Goldbach conjecture : if the even number n can be represented as a sum of two distinct primes p and q , then
p
q
−
φ
(
p
q
)
=
p
q
−
(
p
−
1
)
(
q
−
1
)
=
p
+
q
−
1
=
n
−
1.
{\displaystyle {\begin{aligned}pq-\varphi (pq)&=pq-(p-1)(q-1)\\&=p+q-1\\&=n-1.\end{aligned}}}
It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 5 is a noncototient. The remaining odd numbers are covered by the observations 1 = 2 – φ (2) , 3 = 9 – φ (9) , and 5 = 25 – φ (25) .
For even numbers, it can be shown
2
p
q
−
φ
(
2
p
q
)
=
2
p
q
−
(
p
−
1
)
(
q
−
1
)
=
p
q
+
p
+
q
−
1
=
(
p
+
1
)
(
q
+
1
)
−
2
{\displaystyle {\begin{aligned}2pq-\varphi (2pq)&=2pq-(p-1)(q-1)\\&=pq+p+q-1\\&=(p+1)(q+1)-2\end{aligned}}}
Thus, all even numbers n such that n + 2 can be written as (p + 1)(q + 1) with p, q primes are cototients.
The first few noncototients are
10 , 26 , 34 , 50 , 52 , 58 , 86 , 100 , 116 , 122 , 130 , 134 , 146 , 154 , 170 , 172 , 186, 202, 206, 218, 222 , 232, 244, 260, 266, 268, 274, 290, 292, 298, 310, 326, 340, 344, 346, 362, 366, 372, 386, 394, 404, 412, 436, 466, 470, 474, 482, 490, ... (sequence A005278 in the OEIS )
The cototient of n are
0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, ... (sequence A051953 in the OEIS )
Least k such that the cototient of k is n are (start with n = 0 , 0 if no such k exists)
1, 2, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36, 69, 0, 63, 52, 161, 42, 87, 48, 93, 0, 75, 54, 217, 74, 99, 76, 185, 82, 123, 60, 117, 66, 215, 72, 141, 0, ... (sequence A063507 in the OEIS )
Greatest k such that the cototient of k is n are (start with n = 0 , 0 if no such k exists)
1, ∞, 4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, ... (sequence A063748 in the OEIS )
Number of k s such that k − φ (k ) is n are (start with n = 0 )
1, ∞, 1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, ... (sequence A063740 in the OEIS )
Erdős (1913–1996) and Sierpinski (1882–1969) asked whether there exist infinitely many noncototients. This was finally answered in the affirmative by Browkin and Schinzel (1995), who showed every member of the infinite family
2
k
⋅
509203
{\displaystyle 2^{k}\cdot 509203}
is an example (See Riesel number ). Since then other infinite families, of roughly the same form, have been given by Flammenkamp and Luca (2000).
Cototients of n from 1-144
n
Numbers k such that k − φ (k ) = n
1
all primes
2
4
3
9
4
6, 8
5
25
6
10
7
15, 49
8
12, 14, 16
9
21, 27
10
11
35, 121
12
18, 20, 22
13
33, 169
14
26
15
39, 55
16
24, 28, 32
17
65, 77, 289
18
34
19
51, 91, 361
20
38
21
45, 57, 85
22
30
23
95, 119, 143, 529
24
36, 40, 44, 46
25
69, 125, 133
26
27
63, 81, 115, 187
28
52
29
161, 209, 221, 841
30
42, 50, 58
31
87, 247, 961
32
48, 56, 62, 64
33
93, 145, 253
34
35
75, 155, 203, 299, 323
36
54, 68
37
217, 1369
38
74
39
99, 111, 319, 391
40
76
41
185, 341, 377, 437, 1681
42
82
43
123, 259, 403, 1849
44
60, 86
45
117, 129, 205, 493
46
66, 70
47
215, 287, 407, 527, 551, 2209
48
72, 80, 88, 92, 94
49
141, 301, 343, 481, 589
50
51
235, 451, 667
52
53
329, 473, 533, 629, 713, 2809
54
78, 106
55
159, 175, 559, 703
56
98, 104
57
105, 153, 265, 517, 697
58
59
371, 611, 731, 779, 851, 899, 3481
60
84, 100, 116, 118
61
177, 817, 3721
62
122
63
135, 147, 171, 183, 295, 583, 799, 943
64
96, 112, 124, 128
65
305, 413, 689, 893, 989, 1073
66
90
67
427, 1147, 4489
68
134
69
201, 649, 901, 1081, 1189
70
102, 110
71
335, 671, 767, 1007, 1247, 1271, 5041
72
108, 136, 142
73
213, 469, 793, 1333, 5329
74
146
75
207, 219, 275, 355, 1003, 1219, 1363
76
148
77
245, 365, 497, 737, 1037, 1121, 1457, 1517
78
114
79
511, 871, 1159, 1591, 6241
80
152, 158
81
189, 237, 243, 781, 1357, 1537
82
130
83
395, 803, 923, 1139, 1403, 1643, 1739, 1763, 6889
84
164, 166
85
165, 249, 325, 553, 949, 1273
86
87
415, 1207, 1711, 1927
88
120, 172
89
581, 869, 1241, 1349, 1541, 1769, 1829, 1961, 2021, 7921
90
126, 178
91
267, 1027, 1387, 1891
92
132, 140
93
261, 445, 913, 1633, 2173
94
138, 154
95
623, 1079, 1343, 1679, 1943, 2183, 2279
96
144, 160, 176, 184, 188
97
1501, 2077, 2257, 9409
98
194
99
195, 279, 291, 979, 1411, 2059, 2419, 2491
100
101
485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201
102
202
103
303, 679, 2263, 2479, 2623, 10609
104
206
105
225, 309, 425, 505, 1513, 1909, 2773
106
170
107
515, 707, 1067, 1691, 2291, 2627, 2747, 2867, 11449
108
156, 162, 212, 214
109
321, 721, 1261, 2449, 2701, 2881, 11881
110
150, 182, 218
111
231, 327, 535, 1111, 2047, 2407, 2911, 3127
112
196, 208
113
545, 749, 1133, 1313, 1649, 2573, 2993, 3053, 3149, 3233, 12769
114
226
115
339, 475, 763, 1339, 1843, 2923, 3139
116
117
297, 333, 565, 1177, 1717, 2581, 3337
118
174, 190
119
539, 791, 1199, 1391, 1751, 1919, 2231, 2759, 3071, 3239, 3431, 3551, 3599
120
168, 200, 232, 236
121
1331, 1417, 1957, 3397
122
123
1243, 1819, 2323, 3403, 3763
124
244
125
625, 1469, 1853, 2033, 2369, 2813, 3293, 3569, 3713, 3869, 3953
126
186
127
255, 2071, 3007, 4087, 16129
128
192, 224, 248, 254, 256
129
273, 369, 381, 1921, 2461, 2929, 3649, 3901, 4189
130
131
635, 2147, 2507, 2987, 3131, 3827, 4187, 4307, 4331, 17161
132
180, 242, 262
133
393, 637, 889, 3193, 3589, 4453
134
135
351, 387, 575, 655, 2599, 3103, 4183, 4399
136
268
137
917, 1397, 3161, 3317, 3737, 3977, 4661, 4757, 18769
138
198, 274
139
411, 1651, 3379, 3811, 4171, 4819, 4891, 19321
140
204, 220, 278
141
285, 417, 685, 1441, 3277, 4141, 4717, 4897
142
230, 238
143
363, 695, 959, 1703, 2159, 3503, 3959, 4223, 4343, 4559, 5063, 5183
144
216, 272, 284
References
External links
Possessing a specific set of other numbers
Expressible via specific sums