Message authenticationIn information security, message authentication or data origin authentication is a property that a message has not been modified while in transit (data integrity) and that the receiving party can verify the source of the message.[1] DescriptionMessage authentication or data origin authentication is an information security property that indicates that a message has not been modified while in transit (data integrity) and that the receiving party can verify the source of the message.[1] Message authentication does not necessarily include the property of non-repudiation.[2][3] TechniquesMessage authentication is typically achieved by using message authentication codes (MACs), authenticated encryption (AE), or digital signatures.[2] The message authentication code, also known as digital authenticator, is used as an integrity check based on a secret key shared by two parties to authenticate information transmitted between them.[4] It is based on using a cryptographic hash or symmetric encryption algorithm.[5] The authentication key is only shared by exactly two parties (e.g. communicating devices), and the authentication will fail in the existence of a third party possessing the key since the algorithm will no longer be able to detect forgeries (i.e. to be able to validate the unique source of the message).[6] In addition, the key must also be randomly generated to avoid its recovery through brute-force searches and related-key attacks designed to identify it from the messages transiting the medium.[6] Some cryptographers distinguish between "message authentication without secrecy" systems – which allow the intended receiver to verify the source of the message, but they don't bother hiding the plaintext contents of the message – from authenticated encryption systems.[7] Some cryptographers have researched subliminal channel systems that send messages that appear to use a "message authentication without secrecy" system, but in fact also transmit a secret message. Related conceptsData origin authentication and non-repudiation have been also studied in the framework of quantum cryptography.[8][9] See alsoReferences
Information related to Message authentication |