Since the development of the first quantum computer in 1998, most technologies used to implement qubits face issues of stability, decoherence,[6][7]fault tolerance[8][9] and scalability.[6][9][10] Because of this, many physical qubits are needed for the purposes of error-correction to produce an entity which behaves logically as a single qubit would in a quantum circuit or algorithm; this is the subject of quantum error correction.[3][11] Thus, contemporary logical qubits typically consist of many physical qubits to provide stability, error-correction and fault tolerance needed to perform useful computations.[1][7][11]
In 2023, Google researchers showed how quantum error correction can improve logical qubit performance by increasing the physical qubit count.[12] These results found that a larger logical qubit (49 physical qubits) had a lower error rate, about 2.9 percent per round of error correction, compared to a rate of about 3.0 percent for the smaller logical qubit (17 physical qubits).[13]
In 2024, IBM researchers created a quantum error correction code 10 times more efficient than previous research, protecting 12 logical qubits for roughly a million cycles of error checks using 288 qubits.[14][15] The work demonstrates error correction on near-term devices while reducing overhead – the number of physical qubits required to keep errors low.[16]
In 2024, Microsoft and Quantinuum announced experimental results that showed logical qubits could be created with significantly fewer physical qubits.[17] The team used quantum error correction techniques developed by Microsoft and Quantinuum's trapped ion hardware to use 30 physical qubits to form four logical qubits. Scientists used a qubit virtualization system and active syndrome extraction—also called repeated error correction to accomplish this.[18] This work defines how to achieve logical qubits within quantum computation.[19]
A logical qubit specifies how a single qubit should behave in a quantum algorithm, subject to quantum logic operations which can be built out of quantum logic gates. However, issues in current technologies preclude single two-state quantum systems, which can be used as physical qubits, from reliably encoding and retaining this information for long enough to be useful. Therefore, current attempts to produce scalable quantum computers require quantum error correction, and multiple (currently many) physical qubits must be used to create a single, error-tolerant logical qubit. Depending on the error-correction scheme used, and the error rates of each physical qubit, a single logical qubit could be formed of up to 1,000 physical qubits.[26]