Share to: share facebook share twitter share wa share telegram print page

Principle of minimum energy

The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which are specified externally, such as a constant magnetic field.

In contrast, for isolated systems (and fixed external parameters), the second law states that the entropy will increase to a maximum value at equilibrium. An isolated system has a fixed total energy and mass. A closed system, on the other hand, is a system which is connected to another, and cannot exchange matter (i.e. particles), but can transfer other forms of energy (e.g. heat), to or from the other system. If, rather than an isolated system, we have a closed system, in which the entropy rather than the energy remains constant, then it follows from the first and second laws of thermodynamics that the energy of that system will drop to a minimum value at equilibrium, transferring its energy to the other system. To restate:

  • The maximum entropy principle: For a closed system with fixed internal energy (i.e. an isolated system), the entropy is maximized at equilibrium.
  • The minimum energy principle: For a closed system with fixed entropy, the total energy is minimized at equilibrium.

Mathematical explanation

The total energy of the system is where S is entropy, and the are the other extensive parameters of the system (e.g. volume, particle number, etc.). The entropy of the system may likewise be written as a function of the other extensive parameters as . Suppose that X is one of the which varies as a system approaches equilibrium, and that it is the only such parameter which is varying. The principle of maximum entropy may then be stated as:

  and     at equilibrium.

The first condition states that entropy is at an extremum, and the second condition states that entropy is at a maximum. Note that for the partial derivatives, all extensive parameters are assumed constant except for the variables contained in the partial derivative, but only U, S, or X are shown. It follows from the properties of an exact differential (see equation 8 in the exact differential article) and from the energy/entropy equation of state that, for a closed system:

It is seen that the energy is at an extremum at equilibrium. By similar but somewhat more lengthy argument it can be shown that

which is greater than zero, showing that the energy is, in fact, at a minimum.

Examples

Consider, for one, the familiar example of a marble on the edge of a bowl. If we consider the marble and bowl to be an isolated system, then when the marble drops, the potential energy will be converted to the kinetic energy of motion of the marble. Frictional forces will convert this kinetic energy to heat, and at equilibrium, the marble will be at rest at the bottom of the bowl, and the marble and the bowl will be at a slightly higher temperature. The total energy of the marble-bowl system will be unchanged. What was previously the potential energy of the marble, will now reside in the increased heat energy of the marble-bowl system. This will be an application of the maximum entropy principle as set forth in the principle of minimum potential energy, since due to the heating effects, the entropy has increased to the maximum value possible given the fixed energy of the system.

If, on the other hand, the marble is lowered very slowly to the bottom of the bowl, so slowly that no heating effects occur (i.e. reversibly), then the entropy of the marble and bowl will remain constant, and the potential energy of the marble will be transferred as energy to the surroundings. The surroundings will maximize its entropy given its newly acquired energy, which is equivalent to the energy having been transferred as heat. Since the potential energy of the system is now at a minimum with no increase in the energy due to heat of either the marble or the bowl, the total energy of the system is at a minimum. This is an application of the minimum energy principle.

Alternatively, suppose we have a cylinder containing an ideal gas, with cross sectional area A and a variable height x. Suppose that a weight of mass m has been placed on top of the cylinder. It presses down on the top of the cylinder with a force of mg where g is the acceleration due to gravity.

Suppose that x is smaller than its equilibrium value. The upward force of the gas is greater than the downward force of the weight, and if allowed to freely move, the gas in the cylinder would push the weight upward rapidly, and there would be frictional forces that would convert the energy to heat. If we specify that an external agent presses down on the weight so as to very slowly (reversibly) allow the weight to move upward to its equilibrium position, then there will be no heat generated and the entropy of the system will remain constant while energy is transferred as work to the external agent. The total energy of the system at any value of x is given by the internal energy of the gas plus the potential energy of the weight:

where T is temperature, S is entropy, P is pressure, μ is the chemical potential, N is the number of particles in the gas, and the volume has been written as V=Ax. Since the system is closed, the particle number N is constant and a small change in the energy of the system would be given by:

Since the entropy is constant, we may say that dS=0 at equilibrium and by the principle of minimum energy, we may say that dU=0 at equilibrium, yielding the equilibrium condition:

which simply states that the upward gas pressure force (PA) on the upper face of the cylinder is equal to the downward force of the mass due to gravitation (mg).

Thermodynamic potentials

The principle of minimum energy can be generalized to apply to constraints other than fixed entropy. For other constraints, other state functions with dimensions of energy will be minimized. These state functions are known as thermodynamic potentials. Thermodynamic potentials are at first glance just simple algebraic combinations of the energy terms in the expression for the internal energy. For a simple, multicomponent system, the internal energy may be written:

where the intensive parameters (T, P, μj) are functions of the internal energy's natural variables via the equations of state. As an example of another thermodynamic potential, the Helmholtz free energy is written:

where temperature has replaced entropy as a natural variable. In order to understand the value of the thermodynamic potentials, it is necessary to view them in a different light. They may in fact be seen as (negative) Legendre transforms of the internal energy, in which certain of the extensive parameters are replaced by the derivative of internal energy with respect to that variable (i.e. the conjugate to that variable). For example, the Helmholtz free energy may be written:

and the minimum will occur when the variable T  becomes equal to the temperature since

The Helmholtz free energy is a useful quantity when studying thermodynamic transformations in which the temperature is held constant. Although the reduction in the number of variables is a useful simplification, the main advantage comes from the fact that the Helmholtz free energy is minimized at equilibrium with respect to any unconstrained internal variables for a closed system at constant temperature and volume. This follows directly from the principle of minimum energy which states that at constant entropy, the internal energy is minimized. This can be stated as:

where and are the value of the internal energy and the (fixed) entropy at equilibrium. The volume and particle number variables have been replaced by x which stands for any internal unconstrained variables.

As a concrete example of unconstrained internal variables, we might have a chemical reaction in which there are two types of particle, an A atom and an A2 molecule. If and are the respective particle numbers for these particles, then the internal constraint is that the total number of A atoms is conserved:

we may then replace the and variables with a single variable and minimize with respect to this unconstrained variable. There may be any number of unconstrained variables depending on the number of atoms in the mixture. For systems with multiple sub-volumes, there may be additional volume constraints as well.

The minimization is with respect to the unconstrained variables. In the case of chemical reactions this is usually the number of particles or mole fractions, subject to the conservation of elements. At equilibrium, these will take on their equilibrium values, and the internal energy will be a function only of the chosen value of entropy . By the definition of the Legendre transform, the Helmholtz free energy will be:

The Helmholtz free energy at equilibrium will be:

where is the (unknown) temperature at equilibrium. Substituting the expression for :

By exchanging the order of the extrema:

showing that the Helmholtz free energy is minimized at equilibrium.

The Enthalpy and Gibbs free energy, are similarly derived.

References

  • Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed.). New York: John Wiley & Sons. ISBN 0-471-86256-8. OCLC 485487601.

Read other articles:

Ruud Brood Informasi pribadiNama lengkap Ruud BroodTanggal lahir 19 Oktober 1962 (umur 61)Tempat lahir Gorinchem, BelandaPosisi bermain GelandangInformasi klubKlub saat ini RKC Waalwijk (Manajer)Karier senior*Tahun Tim Tampil (Gol)1983–1985 Feyenoord Rotterdam ? (?)1985–1987 RKC Waalwijk ? (?)1987–1989 FC Den Bosch ? (?)1989–1990 Willem II Tilburg ? (?)1990–1998 NAC Breda ? (?)Kepelatihan1997–2004 NAC Breda (pelatih junior)2004–2006 Helmond Sport2006–2007 Heracles Almelo2008…

Brazilian military unit who fought with the Allies in the Mediterranean Theatre of WWII Brazilian Expeditionary ForceForça Expedicionária BrasileiraBrazilian Expeditionary Force shoulder sleeve insignia (Army component) with a smoking snakeActive1942–1945Country BrazilAllegianceUnited NationsBranchBrazilian ArmyBrazilian Air ForceTypeExpeditionary ForceRoleAerial warfareCombined armsExpeditionary warfareSize25,900Engagements World War II Italian campaign Gothic Line offensive Battle of Monte…

Cet article est une ébauche concernant le chemin de fer et le Japon. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. La traduction de cet article ou de cette section doit être revue (octobre 2023). Le contenu est difficilement compréhensible vu les erreurs de traduction, qui sont peut-être dues à l'utilisation d'un logiciel de trad…

Private, historically Black women's college in Atlanta, Georgia, US Spelman CollegeFormer namesAtlanta Baptist Female Seminary (1881–1884) Spelman Baptist Seminary (1884–1924)MottoOur Whole School for ChristTypePrivate historically Black[1] women's liberal arts collegeEstablishedApril 11, 1881; 142 years ago (1881-04-11)[2][3]Academic affiliationsACSSpace-grantEndowment$459.5 million (2022)[4]Budget$133.8 million (2023)[5]PresidentHel…

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ранне…

The Michigan State University Vietnam Advisory Group (commonly known as the Michigan State University Group and abbreviated MSUG) was a program of technical assistance provided to the government of South Vietnam as an effort in state-building by the US Department of State.[1] From 1955 to 1962, under contract to the International Cooperation Administration in Washington and the Vietnamese government in Saigon, faculty and staff from Michigan State University consulted for agencies of the…

Pour les articles homonymes, voir Saint-Maurice. Saint-Maurice-l'Exil Hôtel de ville de Saint-Maurice-l'Exil. Administration Pays France Région Auvergne-Rhône-Alpes Département Isère Arrondissement Vienne Intercommunalité Communauté de communes Entre Bièvre et Rhône(siège) Maire Mandat Philippe Genty 2020-2026 Code postal 38550 Code commune 38425 Démographie Gentilé Samauritain, Samauritaine Populationmunicipale 6 555 hab. (2021 ) Densité 511 hab./km2 Géographie Coor…

Kepolisian Daerah JambiSingkatanPolda JambiYurisdiksi hukumProvinsi JambiMarkas besarJalan Jenderal Sudirman no. 45, Tambak Sari, Jambi Selatan, Kota JambiPejabat eksekutifIrjen Pol. Rusdi Hartono, KepalaBrigjen Pol.Edi Mardianto, Wakil KepalaSitus webjambi.polri.go.id Kepolisian Daerah Jambi atau Polda Jambi (dulu bernama Komando Daerah Kepolisian (Komdak atau Kodak) V/Jambi) adalah pelaksana tugas Kepolisian RI di wilayah Provinsi Jambi. Polda Jambi tergolong polda tipe A karena itu dipimpin o…

Political party in Poland Yes! For PolandLocal Governments for Poland Tak! Dla PolskiSamorządy dla PolskiAbbreviationT!DPLLeaderJacek Karnowski [pl]Founded31 August 2020 (2020-08-31)Registered6 October 2020 (2020-10-06)Headquartersul. Kartuska 81/680-136 GdańskMembership (2021)500[1]IdeologyRegionalismLocalismDecentralizationPro-EuropeanismProgressivismPolitical positionCentre-left[nb 1]National affiliationSenate Pact 2023 (fo…

Questa voce sull'argomento calciatori brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Renato Renato con la maglia del Siviglia nel 2010 Nazionalità  Brasile Altezza 177 cm Peso 71 kg Calcio Ruolo Centrocampista Termine carriera 3 dicembre 2018 Carriera Giovanili -1997 Guarani Squadre di club1 1998-1999 Guarani37 (5)2000-2004 Santos127 (12)2004-2011 Siviglia204 (26)2011-…

Occupied Palestinian territory in the Middle East For other uses, see Palestinian territories (disambiguation). Palestinian territoriesالأراضي الفلسطينيةal-Arāḍī al-FilasṭīniyyaPalestinian territories according to a Green Line based definitionLargest citiesGazaHebronNablusKhan YunisEast Jerusalem[note 1]LanguagesArabicHebrewEnglishEthnic groups PalestiniansJewsSamaritansDemonym(s)PalestiniansIsraeli/Jewish settlersArea • Total6,220 km2 (2,400…

L'infermiere pediatrico è un professionista sanitario responsabile dell'assistenza infermieristica pediatrica, in possesso della Laurea in Infermieristica Pediatrica e dell'iscrizione all'ordine professionale. Indice 1 Storia 2 Nel mondo 2.1 Italia 2.1.1 Formazione 2.1.2 Competenze e funzioni 2.1.3 Cartella infermieristica 3 Note 4 Bibliografia 5 Voci correlate 6 Collegamenti esterni Storia L'infermieristica pediatrica esisteva come professione con caratteristiche proprie già nell'XIX seco…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

American racing driver NASCAR driver James Roy Jim Paschal, Jr.Born(1926-12-05)December 5, 1926High Point, North Carolina, United StatesDiedJuly 5, 2004(2004-07-05) (aged 77)Atlanta, GeorgiaCause of deathCancerAchievements1964, 1967 World 600 WinnerNASCAR Cup Series career421 races run over 23 yearsBest finish5th (1956)First race1949 Race No. 1 (Charlotte)Last race1972 World 600 (Charlotte)First win1953 Race #36 (Martinsville)Last win1967 Race #27 (Montgomery) Wins Top tens Poles 25 230 12 …

American track and field athlete For other people with the same name, see Ed Moses (disambiguation). Edwin MosesMoses in 2008Personal informationFull nameEdwin Corley Moses[1]Born (1955-08-31) August 31, 1955 (age 68)[1]Dayton, Ohio, U.S.[2]Height6 ft 2 in (188 cm)[2]Weight180 lb (82 kg)[2]SportSportTrack and FieldEventHurdlesClubMorehouse CollegeTeam adidasAchievements and titlesPersonal best(s)110 mH – 13.64 (1978)400…

1971 EuropeanAthletics ChampionshipsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmen10,000 mmen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmen3000 msteeplechasemen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsMarathonmen20 km walkmen50 km walkmenField eventsHigh jumpmenwomenPole vaultmenLong jumpmenwomenTriple jumpmenShot putmenwomenDiscus throwmenwomenHammer throwmenJavelin throwmenwomenCombined eventsPentathlonwomenDecathlonmenvte The women's …

Pour les articles homonymes, voir Simplicius et Simplice. Simplice Portrait imaginaire. Basilique Saint-Paul-hors-les-Murs (mosaïque du milieu du XIXe siècle). Biographie Nom de naissance Simplicius Naissance Vers 420Tivoli Décès 10 mars 483 Rome Pape de l'Église catholique Élection au pontificat 3 mars 468 Fin du pontificat 10 mars 483 Hilaire Félix III (en) Notice sur www.catholic-hierarchy.org modifier  Simplice (en latin : Simplicius), né à Tivoli et mort à Rome le 1…

Chronologies Données clés 1279 1280 1281  1282  1283 1284 1285Décennies :1250 1260 1270  1280  1290 1300 1310Siècles :XIe XIIe  XIIIe  XIVe XVeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Religion (,) et * Croisades   Science () et Santé et médecine   Terrorisme Calendriers Romain Chinois Grégorien Julien Hébraïque Hindou Hégirien Persan Républicain modifier Années de la santé et de la médecine : 1…

إبراهيم قصيعة معلومات شخصية الميلاد 7 ديسمبر 1991 [1]  غزة  الوفاة 14 نوفمبر 2023 (31 سنة)   مخيم جباليا  سبب الوفاة ضربة جوية  قتله القوات الجوية الإسرائيلية  الطول 187 سنتيمتر[1]  الجنسية دولة فلسطين  المدرسة الأم جامعة الأقصى  الحياة العملية المهنة لاعب…

Lalmohan redirects here. For other uses, see Lalmohan (disambiguation). Upazila in Barisal Division, BangladeshLalmohan লালমোহনUpazilaCoordinates: 22°19.3′N 90°44.8′E / 22.3217°N 90.7467°E / 22.3217; 90.7467Country BangladeshDivisionBarisal DivisionDistrictBhola DistrictArea • Total396.24 km2 (152.99 sq mi)Population (2011) • Total283,889 • Density720/km2 (1,900/sq mi)Time zoneUTC+6 (B…

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya