Share to: share facebook share twitter share wa share telegram print page

Quasi-category

In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory.

Quasi-categories were introduced by Boardman & Vogt (1973). André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by Jacob Lurie (2009).

Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are related to each other by higher order invertible morphisms (2-simplices thought of as "homotopies"). These higher order morphisms can also be composed, but again the composition is well-defined only up to still higher order invertible morphisms, etc.

The idea of higher category theory (at least, higher category theory when higher morphisms are invertible) is that, as opposed to the standard notion of a category, there should be a mapping space (rather than a mapping set) between two objects. This suggests that a higher category should simply be a topologically enriched category. The model of quasi-categories is, however, better suited to applications than that of topologically enriched categories, though it has been proved by Lurie that the two have natural model structures that are Quillen equivalent.

Definition

By definition, a quasi-category C is a simplicial set satisfying the inner Kan conditions (also called weak Kan condition): every inner horn in C, namely a map of simplicial sets where , has a filler, that is, an extension to a map . (See Kan fibration#Definitions for a definition of the simplicial sets and .)

The idea is that 2-simplices are supposed to represent commutative triangles (at least up to homotopy). A map represents a composable pair. Thus, in a quasi-category, one cannot define a composition law on morphisms, since one can choose many ways to compose maps.

One consequence of the definition is that is a trivial Kan fibration. In other words, while the composition law is not uniquely defined, it is unique up to a contractible choice.

The homotopy category

Given a quasi-category C, one can associate to it an ordinary category hC, called the homotopy category of C. The homotopy category has as objects the vertices of C. The morphisms are given by homotopy classes of edges between vertices. Composition is given using the horn filler condition for n = 2.

For a general simplicial set there is a functor from sSet to Cat, known as the fundamental category functor, and for a quasi-category C the fundamental category is the same as the homotopy category, i.e. .

Examples

  • The nerve of a category is a quasi-category with the extra property that the filling of any inner horn is unique. Conversely a quasi-category such that any inner horn has a unique filling is isomorphic to the nerve of some category. The homotopy category of the nerve of C is isomorphic to C.
  • Given a topological space X, one can define its singular set S(X), also known as the fundamental ∞-groupoid of X. S(X) is a quasi-category in which every morphism is invertible. The homotopy category of S(X) is the fundamental groupoid of X.
  • More general than the previous example, every Kan complex is an example of a quasi-category. In a Kan complex all maps from all horns—not just inner ones—can be filled, which again has the consequence that all morphisms in a Kan complex are invertible. Kan complexes are thus analogues to groupoids - the nerve of a category is a Kan complex iff the category is a groupoid.

Variants

  • An (∞, 1)-category is a not-necessarily-quasi-category ∞-category in which all n-morphisms for n > 1 are equivalences. There are several models of (∞, 1)-categories, including Segal category, simplicially enriched category, topological category, complete Segal space. A quasi-category is also an (∞, 1)-category.
  • Model structure There is a model structure on sSet-categories that presents the (∞,1)-category (∞,1)Cat.
  • Homotopy Kan extension The notion of homotopy Kan extension and hence in particular that of homotopy limit and homotopy colimit has a direct formulation in terms of Kan-complex-enriched categories. See homotopy Kan extension for more.
  • Presentation of (∞,1)-topos theory All of (∞,1)-topos theory can be modeled in terms of sSet-categories. (ToënVezzosi). There is a notion of sSet-site C that models the notion of (∞,1)-site and a model structure on sSet-enriched presheaves on sSet-sites that is a presentation for the ∞-stack (∞,1)-toposes on C.

See also

References

  • Boardman, J. M.; Vogt, R. M. (1973), Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Mathematics, vol. 347, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0068547, ISBN 978-3-540-06479-4, MR 0420609
  • Groth, Moritz, A short course on infinity-categories (PDF)
  • Joyal, André (2002), "Quasi-categories and Kan complexes", Journal of Pure and Applied Algebra, 175 (1): 207–222, doi:10.1016/S0022-4049(02)00135-4, MR 1935979
  • Joyal, André; Tierney, Myles (2007), "Quasi-categories vs Segal spaces", Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Providence, R.I.: Amer. Math. Soc., pp. 277–326, arXiv:math.AT/0607820, MR 2342834
  • Joyal, A. (2008), The theory of quasi-categories and its applications, lectures at CRM Barcelona (PDF), archived from the original (PDF) on July 6, 2011
  • Joyal, A., Notes on quasicategories (PDF)
  • Lurie, Jacob (2009), Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, arXiv:math.CT/0608040, ISBN 978-0-691-14049-0, MR 2522659
  • Joyal's Catlab entry: The theory of quasi-categories
  • quasi-category at the nLab
  • infinity-category at the nLab
  • fundamental+category at the nLab
  • Bergner, Julia E (2011). "Workshop on the homotopy theory of homotopy theories". arXiv:1108.2001 [math.AT].
  • (∞, 1)-category at the nLab
  • Hinich, Vladimir (2017-09-19). "Lectures on infinity categories". arXiv:1709.06271 [math.CT].
  • Toën, Bertrand; Vezzosi, Gabriele (2005), "Homotopical Algebraic Geometry I: Topos theory", Advances in Mathematics, 193 (2): 257–372, arXiv:math.AG/0207028, doi:10.1016/j.aim.2004.05.004

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. Usain Bolt Rekam medali Mewakili  Jamaika Atletik Pria Olimpiade Beijing 2008 100 m Beijing 2008 200 m Didiskualifikasi Beijing 2008 4 × 100 m estafet London 2012 100 m London 2012 200 m London 2012 4 × 100 m estafet Rio 2016 100 m Rio 2016 200 m Rio 2016 4 × 100 m estafet Kejuaraan Dunia Berlin 2009 100 m Berlin 2009 …

Beberapa bagian biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis. Khofifah Indar Parawansa Gubernur Jawa Timur ke-14Masa jabatan13 Februari 2019 – 13 Februari 2024WakilEmil Dardak PendahuluSoekarwoPenggantiAdhy Karyono (penjabat)Menteri Sosial Indonesia ke-27Masa jabatan27 Oktober 2014 – 17 Januari 2018PresidenJoko Widodo PendahuluSalim Segaf Al-JufriPenggantiIdrus MarhamMenteri N…

American businessman, financier, philanthropist, and conservationist (1910-2004) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2023) (Learn how and when to remove this template message) Laurance RockefellerLaurance Rockefeller (1965)BornLaurance Spelman Rockefeller(1910-05-26)May 26, 1910New York City, New York, U.S.DiedJuly 11, 2004(2004-07-11) (aged…

Scottish novelist and poet (1850–1894) Robert Louis StevensonStevenson in 1893BornRobert Lewis Balfour Stevenson(1850-11-13)13 November 1850Edinburgh, ScotlandDied3 December 1894(1894-12-03) (aged 44)Vailima, Upolu, SamoaOccupation Novelist poet travel writer Alma materUniversity of EdinburghLiterary movementNeo-romanticismNotable works Treasure Island A Child's Garden of Verses Kidnapped Strange Case of Dr Jekyll and Mr Hyde Spouse Fanny Van de Grift Osbourne ​ ​(…

1996 novel by Larry Niven The Ringworld Throne Ballantine front-coverAuthorLarry NivenCover artistBarclay ShawCountryUnited StatesLanguageEnglishSeriesRingworld, Known SpaceGenreScience fictionPublisherDel ReyPublication date1996Media typePrint (hardback & paperback)Pages424ISBN0-345-35861-9OCLC33818303Dewey Decimal813/.54 20LC ClassPS3564.I9 R56 1996Preceded byThe Ringworld Engineers Followed byRingworld's Children  The Ringworld Throne is a science fictio…

American conservative news website 1819 NewsType of siteNews websiteAvailable inEnglishHeadquartersBirmingham, Alabama, U.S.Owner1819 News, LLCPresidentBryan DawsonURL1819news.comCommercialYesLaunchedOctober 2021Current statusActive 1819 News is an American conservative news website that focuses on the state of Alabama. The publication was launched in October 2021 as a subsidiary of the Alabama Policy Institute, but has been an independent non-profit organization since January 2023. Hi…

German architect Jürgen MayerBorn1965Stuttgart, West GermanyNationalityGermanOccupationArchitectBuildingsMetropol Parasol in Sevilla, Spain & New Airport Building in Mestia, Georgia Metropol Parasol in Seville, Spain. Mensa Moltke in Karlsruhe, Germany. Office building ADA1 in Hamburg, Germany. Danfoss Universe in Nordborg, Denmark. Border checkpoint in Sarpi, Georgia Park Inn Hotel in Kraków, Poland Jürgen Hermann Mayer (born 1965 in Stuttgart) is a German architect and artist. He is the…

Berikut ini adalah daftar gunung serta pegunungan di negara Jepang berdasarkan ketinggiannya. Gunung Fuji dilihat dari kota Fuji di prefektur Shizuoka Diatas 3000 meter Gunung Kita dilihat dari gunung Nakashirane Nama Gunung Ketinggian (Meter) Ketinggian (Kaki) Prefektur Gunung Fuji 3.776 12.388 Shizuoka / Yamanashi Gunung Kita 3.193 10.476 Yamanashi Gunung Okuhotaka 3.190 10.466 Gifu / Nagano Gunung Aino 3.189 10.463 Shizuoka / Yamanashi Gunung Yari 3.180 10.433 Gifu / Nagano Gunung Warusawa 3.…

Ryan Blaney Ryan Blaney à l'Indianapolis Motor Speedway en 2021. Données clés Date de naissance 31 décembre 1993 (30 ans)Cortland, Ohio, États-Unis No  et écurie 12, Team Penske 1re course 2014, 5-hour Energy 400 (Kansas) 1re victoire 2017, Axalta presents the Pocono 400 (Pocono) Dernière victoire 2023, Xfinity 500 (Martinsville) Palmarès Champion NASCAR Cup Series 2023 Champion NASCAR Truck Series 2013 et 2014 Statistiques en NASCAR Cup Series Résultats VictoiresTop 10Poles 1…

Sudut kota Most Most (Jerman: Brüx) merupakan sebuah kota yang terletak di bagian baratlaut Ceko. Tepatnya di Daerah Ústí nad Labem. Terletak 77 km dari baratlaut Praha. Pada tahun 2008, kota ini memiliki jumlah penduduk sebesar 67.216 jiwa dan memiliki luas wilayah 86,94 km². Kota ini memiliki angka kepadatan penduduk sebesar 773 jiwa/km². Kota kembar Meppel, Belanda Marienberg, Jerman Ptolemaida, Yunani Pranala luar Situs resmi Diarsipkan 2005-02-05 di Wayback Machine. Demolition and cons…

Ercole Consalvicardinale di Santa Romana ChiesaRitratto del cardinale Consalvi, opera di Thomas Lawrence del 1819  Incarichi ricoperti Pro-Segretario di Stato di Sua Santità (1800) Cardinale Segretario di Stato di Sua Santità (1800-1806) (1814-1823) Prefetto della Congregazione della Sacra Consulta (1801-1806) (1814-1823) Cardinale diacono di Sant'Agata alla Suburra (1800-1817) Pro-Bibliotecario di Santa Romana Chiesa (1801-1806) Pro-prefetto del Supremo Tribunale della Segnatura Apostoli…

La famigliaThe FamilyPoster filmSutradaraEttore ScolaProduserFranco CommitteriDitulis olehRuggero MaccariEttore ScolaFurio ScarpelliPemeran Vittorio Gassman Stefania Sandrelli Fanny Ardant Sergio Castellitto Athina Cenci Jo Champa Massimo Dapporto Cecilia Dazzi Hania Kochansky Dagmar Lassander Andrea Occhipinti Alessandra Panelli Memè Perlini Ottavia Piccolo Monica Scattini Barbara Scoppa Ricky Tognazzi Massimo Venturiello Philippe Noiret Carlo Dapporto Renzo Palmer Penata musikArmando Tr…

У этого термина существуют и другие значения, см. Тур. Запрос «Bos taurus primigenius» перенаправляется сюда; см. также другие значения. † Тур Скелет тура Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вт…

Pantai Teluk Awur Lokasi di Indonesia Informasi Lokasi Jepara. Negara  indonesia Koordinat 6°07′36″S 110°24′00″E / 6.1268°S 110.400°E / -6.1268; 110.400Koordinat: 6°07′36″S 110°24′00″E / 6.1268°S 110.400°E / -6.1268; 110.400 Pemilik Pengelola Pemdes Telukawur Dibuat oleh Pemkab Jepara Jenis objek wisata Wisata pantai Fasilitas  • Pantai  • Taman • Banana Boat • Kamar Bilas • Dermaga…

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского посел…

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Sadruddin Aga Khan di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjem…

Kingsmills ParkFull nameKingsmills ParkLocationInvernessScotlandCoordinates57°28′33″N 4°12′48″W / 57.4757°N 4.2134°W / 57.4757; -4.2134OwnerInverness Thistle F.C.Capacity5000 (600 seated)[1]SurfaceGrassConstructionBuilt1895 (1895)Demolished1994 (1994) Kingsmills Park was a football ground in Inverness, Scotland.[2] It was the home ground of Inverness Thistle F.C.[3] Following the merger of Inverness Thistle with Caledonian F.C…

Alex Hofmann Alex Hoffman lahir di Mindelheim, Jerman pada tanggal 25 Mei 1980. Ia menjalani debut GP Motor pada tahun 1997 di kelas 125cc, GP Jerman Tahun 2001 ia bergabung bersama tim Dark Dog Racing Factory Aprilia, berlaga di kelas 250cc. Dan berada di peringkat 12 dengan poin 55. Tahun 2002 Hoffman menjadi pembalap pengganti di dua tim yang berbeda di kelas MotoGP, yaitu di tim Red Bull Yamaha WCM dan West Honda Pons. Musim balap 2003 Hoffman kembali menjadi pembalap pengganti di MotoGP, na…

«   رسالة يوحنا الثالثة   » عدد الإصحاحات 1 الكاتب وفق التقليد يوحنا تاريخ الكتابة المتوقع من 85م إلى 90م مكان الكتابة المتوقع أفسس تصنيفه 25 نص رسالة يوحنا الثالثة في ويكي مصدرمكتبة النصوص المجانية جزء من سلسلة مقالات حولأسفار العهد الجديد الأناجيل الأناجيل متى…

Kembali kehalaman sebelumnya