Share to: share facebook share twitter share wa share telegram print page

Rectangle

Rectangle
Rectangle
Typequadrilateral, trapezium, parallelogram, orthotope
Edges and vertices4
Schläfli symbol{ } × { }
Coxeter–Dynkin diagrams
Symmetry groupDihedral (D2), [2], (*22), order 4
Propertiesconvex, isogonal, cyclic Opposite angles and sides are congruent
Dual polygonrhombus

In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle.[1][2][3] A rectangle with vertices ABCD would be denoted as  ABCD.

The word rectangle comes from the Latin rectangulus, which is a combination of rectus (as an adjective, right, proper) and angulus (angle).

A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals[4] (therefore only two sides are parallel). It is a special case of an antiparallelogram, and its angles are not right angles and not all equal, though opposite angles are equal. Other geometries, such as spherical, elliptic, and hyperbolic, have so-called rectangles with opposite sides equal in length and equal angles that are not right angles.

Rectangles are involved in many tiling problems, such as tiling the plane by rectangles or tiling a rectangle by polygons.

Characterizations

A convex quadrilateral is a rectangle if and only if it is any one of the following:[5][6]

  • a parallelogram with at least one right angle
  • a parallelogram with diagonals of equal length
  • a parallelogram ABCD where triangles ABD and DCA are congruent
  • an equiangular quadrilateral
  • a quadrilateral with four right angles
  • a quadrilateral where the two diagonals are equal in length and bisect each other[7]
  • a convex quadrilateral with successive sides a, b, c, d whose area is .[8]: fn.1 
  • a convex quadrilateral with successive sides a, b, c, d whose area is [8]

Classification

A rectangle is a special case of both parallelogram and trapezoid. A square is a special case of a rectangle.

Traditional hierarchy

A rectangle is a special case of a parallelogram in which each pair of adjacent sides is perpendicular.

A parallelogram is a special case of a trapezium (known as a trapezoid in North America) in which both pairs of opposite sides are parallel and equal in length.

A trapezium is a convex quadrilateral which has at least one pair of parallel opposite sides.

A convex quadrilateral is

  • Simple: The boundary does not cross itself.
  • Star-shaped: The whole interior is visible from a single point, without crossing any edge.

Alternative hierarchy

De Villiers defines a rectangle more generally as any quadrilateral with axes of symmetry through each pair of opposite sides.[9] This definition includes both right-angled rectangles and crossed rectangles. Each has an axis of symmetry parallel to and equidistant from a pair of opposite sides, and another which is the perpendicular bisector of those sides, but, in the case of the crossed rectangle, the first axis is not an axis of symmetry for either side that it bisects.

Quadrilaterals with two axes of symmetry, each through a pair of opposite sides, belong to the larger class of quadrilaterals with at least one axis of symmetry through a pair of opposite sides. These quadrilaterals comprise isosceles trapezia and crossed isosceles trapezia (crossed quadrilaterals with the same vertex arrangement as isosceles trapezia).

Properties

Symmetry

A rectangle is cyclic: all corners lie on a single circle.

It is equiangular: all its corner angles are equal (each of 90 degrees).

It is isogonal or vertex-transitive: all corners lie within the same symmetry orbit.

It has two lines of reflectional symmetry and rotational symmetry of order 2 (through 180°).

Rectangle-rhombus duality

The dual polygon of a rectangle is a rhombus, as shown in the table below.[10]

Rectangle Rhombus
All angles are equal. All sides are equal.
Alternate sides are equal. Alternate angles are equal.
Its centre is equidistant from its vertices, hence it has a circumcircle. Its centre is equidistant from its sides, hence it has an incircle.
Two axes of symmetry bisect opposite sides. Two axes of symmetry bisect opposite angles.
Diagonals are equal in length. Diagonals intersect at equal angles.
  • The figure formed by joining, in order, the midpoints of the sides of a rectangle is a rhombus and vice versa.

Miscellaneous

A rectangle is a rectilinear polygon: its sides meet at right angles.

A rectangle in the plane can be defined by five independent degrees of freedom consisting, for example, of three for position (comprising two of translation and one of rotation), one for shape (aspect ratio), and one for overall size (area).

Two rectangles, neither of which will fit inside the other, are said to be incomparable.

Formulae

The formula for the perimeter of a rectangle
The area of a rectangle is the product of the length and width.

If a rectangle has length and width , then:[11]

  • it has area ;
  • it has perimeter ;
  • each diagonal has length ; and
  • when , the rectangle is a square.[1]

Theorems

The isoperimetric theorem for rectangles states that among all rectangles of a given perimeter, the square has the largest area.

The midpoints of the sides of any quadrilateral with perpendicular diagonals form a rectangle.

A parallelogram with equal diagonals is a rectangle.

The Japanese theorem for cyclic quadrilaterals[12] states that the incentres of the four triangles determined by the vertices of a cyclic quadrilateral taken three at a time form a rectangle.

The British flag theorem states that with vertices denoted A, B, C, and D, for any point P on the same plane of a rectangle:[13]

For every convex body C in the plane, we can inscribe a rectangle r in C such that a homothetic copy R of r is circumscribed about C and the positive homothety ratio is at most 2 and .[14]

There exists a unique rectangle with sides and , where is less than , with two ways of being folded along a line through its center such that the area of overlap is minimized and each area yields a different shape – a triangle and a pentagon. The unique ratio of side lengths is .[15]

Crossed rectangles

A crossed quadrilateral (self-intersecting) consists of two opposite sides of a non-self-intersecting quadrilateral along with the two diagonals. Similarly, a crossed rectangle is a crossed quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals. It has the same vertex arrangement as the rectangle. It appears as two identical triangles with a common vertex, but the geometric intersection is not considered a vertex.

A crossed quadrilateral is sometimes likened to a bow tie or butterfly, sometimes called an "angular eight". A three-dimensional rectangular wire frame that is twisted can take the shape of a bow tie.

The interior of a crossed rectangle can have a polygon density of ±1 in each triangle, dependent upon the winding orientation as clockwise or counterclockwise.

A crossed rectangle may be considered equiangular if right and left turns are allowed. As with any crossed quadrilateral, the sum of its interior angles is 720°, allowing for internal angles to appear on the outside and exceed 180°.[16]

A rectangle and a crossed rectangle are quadrilaterals with the following properties in common:

  • Opposite sides are equal in length.
  • The two diagonals are equal in length.
  • It has two lines of reflectional symmetry and rotational symmetry of order 2 (through 180°).

Other rectangles

A saddle rectangle has 4 nonplanar vertices, alternated from vertices of a rectangular cuboid, with a unique minimal surface interior defined as a linear combination of the four vertices, creating a saddle surface. This example shows 4 blue edges of the rectangle, and two green diagonals, all being diagonal of the cuboid rectangular faces.

In spherical geometry, a spherical rectangle is a figure whose four edges are great circle arcs which meet at equal angles greater than 90°. Opposite arcs are equal in length. The surface of a sphere in Euclidean solid geometry is a non-Euclidean surface in the sense of elliptic geometry. Spherical geometry is the simplest form of elliptic geometry.

In elliptic geometry, an elliptic rectangle is a figure in the elliptic plane whose four edges are elliptic arcs which meet at equal angles greater than 90°. Opposite arcs are equal in length.

In hyperbolic geometry, a hyperbolic rectangle is a figure in the hyperbolic plane whose four edges are hyperbolic arcs which meet at equal angles less than 90°. Opposite arcs are equal in length.

Tessellations

The rectangle is used in many periodic tessellation patterns, in brickwork, for example, these tilings:


Stacked bond

Running bond

Basket weave

Basket weave

Herringbone pattern

Squared, perfect, and other tiled rectangles

A perfect rectangle of order 9
Lowest-order perfect squared square (1) and the three smallest perfect squared squares (2–4) – all are simple squared squares

A rectangle tiled by squares, rectangles, or triangles is said to be a "squared", "rectangled", or "triangulated" (or "triangled") rectangle respectively. The tiled rectangle is perfect[17][18] if the tiles are similar and finite in number and no two tiles are the same size. If two such tiles are the same size, the tiling is imperfect. In a perfect (or imperfect) triangled rectangle the triangles must be right triangles. A database of all known perfect rectangles, perfect squares and related shapes can be found at squaring.net. The lowest number of squares need for a perfect tiling of a rectangle is 9[19] and the lowest number needed for a perfect tilling a square is 21, found in 1978 by computer search.[20]

A rectangle has commensurable sides if and only if it is tileable by a finite number of unequal squares.[17][21] The same is true if the tiles are unequal isosceles right triangles.

The tilings of rectangles by other tiles which have attracted the most attention are those by congruent non-rectangular polyominoes, allowing all rotations and reflections. There are also tilings by congruent polyaboloes.

Unicode

The following Unicode code points depict rectangles:

   U+25AC ▬ BLACK RECTANGLE
   U+25AD ▭ WHITE RECTANGLE
   U+25AE ▮ BLACK VERTICAL RECTANGLE
   U+25AF ▯ WHITE VERTICAL RECTANGLE

See also

References

  1. ^ a b Tapson, Frank (July 1999). "A Miscellany of Extracts from a Dictionary of Mathematics" (PDF). Oxford University Press. Archived from the original (PDF) on 2014-05-14. Retrieved 2013-06-20.
  2. ^ "Definition of Oblong". Math Is Fun. Retrieved 2011-11-13.
  3. ^ Oblong – Geometry – Math Dictionary. Icoachmath.com. Retrieved 2011-11-13.
  4. ^ Coxeter, Harold Scott MacDonald; Longuet-Higgins, M.S.; Miller, J.C.P. (1954). "Uniform polyhedra". Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. 246 (916). The Royal Society: 401–450. Bibcode:1954RSPTA.246..401C. doi:10.1098/rsta.1954.0003. ISSN 0080-4614. JSTOR 91532. MR 0062446. S2CID 202575183.
  5. ^ Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, pp. 34–36 ISBN 1-59311-695-0.
  6. ^ Owen Byer; Felix Lazebnik; Deirdre L. Smeltzer (19 August 2010). Methods for Euclidean Geometry. MAA. pp. 53–. ISBN 978-0-88385-763-2. Retrieved 2011-11-13.
  7. ^ Gerard Venema, "Exploring Advanced Euclidean Geometry with GeoGebra", MAA, 2013, p. 56.
  8. ^ a b Josefsson Martin (2013). "Five Proofs of an Area Characterization of Rectangles" (PDF). Forum Geometricorum. 13: 17–21. Archived from the original (PDF) on 2016-03-04. Retrieved 2013-02-08.
  9. ^ An Extended Classification of Quadrilaterals Archived 2019-12-30 at the Wayback Machine (An excerpt from De Villiers, M. 1996. Some Adventures in Euclidean Geometry. University of Durban-Westville.)
  10. ^ de Villiers, Michael, "Generalizing Van Aubel Using Duality", Mathematics Magazine 73 (4), Oct. 2000, pp. 303–307.
  11. ^ "Rectangle". Math Is Fun. Retrieved 2024-03-22.
  12. ^ Cyclic Quadrilateral Incentre-Rectangle Archived 2011-09-28 at the Wayback Machine with interactive animation illustrating a rectangle that becomes a 'crossed rectangle', making a good case for regarding a 'crossed rectangle' as a type of rectangle.
  13. ^ Hall, Leon M. & Robert P. Roe (1998). "An Unexpected Maximum in a Family of Rectangles" (PDF). Mathematics Magazine. 71 (4): 285–291. doi:10.1080/0025570X.1998.11996653. JSTOR 2690700. Archived from the original (PDF) on 2010-07-23. Retrieved 2011-11-13.
  14. ^ Lassak, M. (1993). "Approximation of convex bodies by rectangles". Geometriae Dedicata. 47: 111–117. doi:10.1007/BF01263495. S2CID 119508642.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A366185 (Decimal expansion of the real root of the quintic equation )". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ Stars: A Second Look. (PDF). Retrieved 2011-11-13.
  17. ^ a b R.L. Brooks; C.A.B. Smith; A.H. Stone & W.T. Tutte (1940). "The dissection of rectangles into squares". Duke Math. J. 7 (1): 312–340. doi:10.1215/S0012-7094-40-00718-9.
  18. ^ J.D. Skinner II; C.A.B. Smith & W.T. Tutte (November 2000). "On the Dissection of Rectangles into Right-Angled Isosceles Triangles". Journal of Combinatorial Theory, Series B. 80 (2): 277–319. doi:10.1006/jctb.2000.1987.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A219766 (Number of nonsquare simple perfect squared rectangles of order n up to symmetry)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ "Squared Squares; Perfect Simples, Perfect Compounds and Imperfect Simples". www.squaring.net. Retrieved 2021-09-26.
  21. ^ R. Sprague (1940). "Ũber die Zerlegung von Rechtecken in lauter verschiedene Quadrate". Journal für die reine und angewandte Mathematik (in German). 1940 (182): 60–64. doi:10.1515/crll.1940.182.60. S2CID 118088887.

Read other articles:

1946 incident Lengkong incidentPart of the Indonesian National RevolutionDate25 January 1946LocationLengkong, Tangerang, BantenResult Japanese victoryBelligerents  Indonesia  JapanCommanders and leaders Major Daan Mogot †Strength Cadets and officers Local garrisonCasualties and losses 36 killed Unknown vteIndonesian National Revolution1945 Bersiap Kotabaru Semarang Medan Ambarawa Surabaya Kolaka Cumbok Borneo West Kalimantan Kumai 1946 Lengkong East Sumatra Bandung 3 July Ma…

AgordatUna fotografia dell'AgordatDescrizione generale Tipoincrociatore torpediniere (1900-1914)esploratore (1914-1921)cannoniera (1921-1923) ClasseAgordat Proprietà Regia Marina CostruttoriRegio Arsenale, Castellammare di Stabia Impostazione18 febbraio 1897 Varo11 ottobre 1899 Entrata in servizio26 settembre 1900 Radiazione4 gennaio 1923 Destino finaledemolito Caratteristiche generaliDislocamentocarico normale 1340 tpieno carico 1530 t Lunghezza91,6 m Larghezza9,3 m Pescaggio4,3&…

George Bancroft(1846) Nama dalam bahasa asli(en) George Bancroft BiografiKelahiran3 Oktober 1800 Worcester Kematian17 Januari 1891 (90 tahun)Washington, D.C. Tempat pemakamanRural Cemetery (en)   Dewan Direksi Institusi Smithsonian11 Desember 1874 – Maret 1878   United States Secretary of the Navy (en) 11 Maret 1845 – 9 September 1846 ← John Y. Mason (en) – John Y. Mason (en) →   Duta besar    Daftar dut…

Iffat binti Muhammad ats-TsunayanRatu mengunjungi Sekolah Dar Al HannanKelahiran1916Istanbul, Kesultanan UtsmaniyahKematian17 Februari 2000 (umur 84)Riyadh, Arab SaudiWangsaWangsa SaudNama lengkapIffat binti Muhammad bin Abdullah bin Abdullah bin ThunayanAyahMuhammad bin Abdullah ats-TsunayanIbuAsia HanımPasanganFaisal dari Arab Saudi ​ ​(m. 1932; meninggal 1975)​Anak Daftar Putri SaraPangeran Mohammad Putri Latifa Pangeran Saud Pangeran Abdul Rah…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan,…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Dalam artikel ini, nama keluarganya adalah de Bruyn. Erik de BruynLahir27 Oktober 1962 (umur 61)Terneuzen, Zeeland, BelandaPekerjaanSutradara, pemeranTahun aktif1990-kini Erik de Bruyn (lahir 27 Oktober 1962) adalah seorang sutradara dan pemera…

Chronologie de la France ◄◄ 1771 1772 1773 1774 1775 1776 1777 1778 1779 ►► Chronologies Louis XVI en costume de sacre, Joseph-Siffrein Duplessis, 1775.Données clés 1772 1773 1774  1775  1776 1777 1778Décennies :1740 1750 1760  1770  1780 1790 1800Siècles :XVIe XVIIe  XVIIIe  XIXe XXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature…

Wells Fargo Center Informasi stadionNama lamaCoreStates Center (1996–1998)[1]First Union Center (1998–2003)[1]Wachovia Center (2003–2010)[2]PemilikComcast SpectacorLokasiLokasiPhiladelphia, PennsylvaniaKoordinat39°54′4″N 75°10′19″W / 39.90111°N 75.17194°W / 39.90111; -75.17194Koordinat: 39°54′4″N 75°10′19″W / 39.90111°N 75.17194°W / 39.90111; -75.17194Transportasi umum NRG station: Galat Lua: ex…

Mountain in Canada and USA This article is about the mountain in Canada and the United States. For the mountain in New Zealand, see Mount Vancouver (New Zealand). Mount VancouverWest aspectHighest pointElevation4,812 m (15,787 ft)[1]Prominence2,692 m (8,832 ft)[1]ListingNorth America highest peaks 15thNorth America prominent peak 26thCanada highest major peaks 7thCanada most prominent peaks 9thCoordinates60°21′32″N 139°41′53″W / …

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Nakankoyo, California – news · newspapers · books · scholar · JSTOR (April 2021) Nakankoyo (also, Naku) is a former Maidu village in Plumas County, California.[1] It was located at Big Spring, but its precise location is unknown.[1] Refer…

Italian artist, architect and poet (1475–1564) For other uses, see Michelangelo (disambiguation). MichelangeloPortrait by Daniele da Volterra, c. 1545BornMichelangelo di Lodovico Buonarroti Simoni6 March 1475Caprese, Republic of FlorenceDied18 February 1564(1564-02-18) (aged 88)Rome, Papal StatesKnown for Sculpture painting architecture poetry Notable workPietà (1498–1499)David (1501–1504)Sistine Chapel ceiling (1508–1512)Moses (1513–1515)The Last Judgment (1536–1541…

Benediktus Tambonop Bupati Boven Digoel ke-3Masa jabatan29 April 2016 – 13 Januari 2020PresidenJoko WidodoGubernurLukas EnembeWakilChaerul AnwarPendahuluYesaya MerasiPenggantiChaerul Anwar Informasi pribadiLahir(1975-05-27)27 Mei 1975[1]Merauke, Papua, IndonesiaMeninggal13 Januari 2020(2020-01-13) (umur 44)[2]Jakarta, IndonesiaPartai politikPDI PerjuanganSuami/istriJuliana Tangke AlloAnak5Alma materSTPDN JatinangorSunting kotak info • L • B Bened…

Södermanland County Södermanlands länDaerah di Swedia  CountrySwediaIbu kotaNyköpingPemerintahan • GubernurBo Könberg • DewanLandstinget SörmlandLuas • Total6.061 km2 (2,340 sq mi)Populasi (March 31 2011)[1] • Total270.981 • Kepadatan45/km2 (120/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)GDP/ NominalSEK 52,235 million (2004)GDP per capitaSEK 202,000NUTS RegionSE122 …

British TV series or programme Lord Peter WimseyOpening titlescreenGenre Mystery Period drama Based onStories by Dorothy L. SayersWritten by Anthony Steven John Bowen Bill Craig Starring Ian Carmichael Glyn Houston Mark Eden ComposerHerbert ChappellCountry of originUnited KingdomOriginal languageEnglishNo. of episodes21ProductionProducers Richard Beynon Bill Sellars Camera setupMulti-cameraRunning time44-60 minutesOriginal releaseNetworkBBC1Release5 April 1972 (1972-04-05) –13 August…

丹尼爾·奧蒂嘉José Daniel Ortega Saavedra尼加拉瓜總統现任就任日期2007年1月10日前任恩里克·博拉尼奥斯任期1985年1月10日—1990年4月25日前任自己(國家重建軍政府协调员)继任比奥莱塔·查莫罗國家重建軍政府协调员任期1979年7月18日—1985年1月10日前任安纳斯塔西奥·索摩查·德瓦伊莱继任改任總統 个人资料出生 (1945-11-11) 1945年11月11日(78歲) 尼加拉瓜瓊塔萊斯省[1]政党…

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) • …

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) • …

Village in Estonia Village in Saare County, EstoniaSutuVillageCountry EstoniaCountySaare CountyParishSaaremaa ParishTime zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Sutu is a village in Saaremaa Parish, Saare County, on the island of Saaremaa, Estonia.[1] Before the administrative reform in 2017, the village was in Pihtla Parish.[2] References ^ Lisa. Asustusüksuste nimistu (PDF). haldusreform.fin.ee (in Estonian). Rahandusministeerium. Retrieved 5 December 2017.…

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) 土…

Travis FimmelFimmel di San Diego Comic-Con International 2015Lahir15 Juli 1979 (umur 44)Echuca, Victoria, AustraliaPekerjaanPemeran, mantan modelTahun aktif2002–sekarangInformasi modelingTinggi182 cm (6 ft 0 in) Travis Fimmel (lahir 15 Juli 1979) adalah seorang pemeran dan mantan model asal Australia. Ia dikenal karena memerankan Ragnar Lothbrok dalam seri televisi History Channel Vikings.[1][2] Referensi ^ Prudom, Laura Vikings On History: Travis Fimme…

Kembali kehalaman sebelumnya