Hyperrectangle
In geometry, a hyperrectangle (also called a box, hyperbox, -cell or orthotope[2]), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient condition is that it is congruent to the Cartesian product of finite intervals.[3] This means that a -dimensional rectangular solid has each of its edges equal to one of the closed intervals used in the definition. Every -cell is compact.[4][5] If all of the edges are equal length, it is a hypercube. A hyperrectangle is a special case of a parallelotope. Formal definitionFor every integer from to , let and be real numbers such that . The set of all points in whose coordinates satisfy the inequalities is a -cell.[6] IntuitionA -cell of dimension is especially simple. For example, a 1-cell is simply the interval with . A 2-cell is the rectangle formed by the Cartesian product of two closed intervals, and a 3-cell is a rectangular solid. The sides and edges of a -cell need not be equal in (Euclidean) length; although the unit cube (which has boundaries of equal Euclidean length) is a 3-cell, the set of all 3-cells with equal-length edges is a strict subset of the set of all 3-cells. TypesA four-dimensional orthotope is likely a hypercuboid.[7] The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube.[2] By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.[8] Dual polytope
The dual polytope of an n-orthotope has been variously called a rectangular n-orthoplex, rhombic n-fusil, or n-lozenge. It is constructed by 2n points located in the center of the orthotope rectangular faces. An n-fusil's Schläfli symbol can be represented by a sum of n orthogonal line segments: { } + { } + ... + { } or n{ }. A 1-fusil is a line segment. A 2-fusil is a rhombus. Its plane cross selections in all pairs of axes are rhombi.
See alsoNotes
References
External links
|