Share to: share facebook share twitter share wa share telegram print page

Hilbert cube

In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).

Definition

The Hilbert cube is best defined as the topological product of the intervals for That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence

The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension. Some authors use the term "Hilbert cube" to mean this Cartesian product instead of the product of the .[1]

If a point in the Hilbert cube is specified by a sequence with then a homeomorphism to the infinite dimensional unit cube is given by

The Hilbert cube as a metric space

It is sometimes convenient to think of the Hilbert cube as a metric space, indeed as a specific subset of a separable Hilbert space (that is, a Hilbert space with a countably infinite Hilbert basis). For these purposes, it is best not to think of it as a product of copies of but instead as as stated above, for topological properties, this makes no difference. That is, an element of the Hilbert cube is an infinite sequence that satisfies

Any such sequence belongs to the Hilbert space so the Hilbert cube inherits a metric from there. One can show that the topology induced by the metric is the same as the product topology in the above definition.

Properties

As a product of compact Hausdorff spaces, the Hilbert cube is itself a compact Hausdorff space as a result of the Tychonoff theorem. The compactness of the Hilbert cube can also be proved without the axiom of choice by constructing a continuous function from the usual Cantor set onto the Hilbert cube.

In no point has a compact neighbourhood (thus, is not locally compact). One might expect that all of the compact subsets of are finite-dimensional. The Hilbert cube shows that this is not the case. But the Hilbert cube fails to be a neighbourhood of any point because its side becomes smaller and smaller in each dimension, so that an open ball around of any fixed radius must go outside the cube in some dimension.

Any infinite-dimensional convex compact subset of is homeomorphic to the Hilbert cube. The Hilbert cube is a convex set, whose span is the whole space, but whose interior is empty. This situation is impossible in finite dimensions. The tangent cone to the cube at the zero vector is the whole space.

Every subset of the Hilbert cube inherits from the Hilbert cube the properties of being both metrizable (and therefore T4) and second countable. It is more interesting that the converse also holds: Every second countable T4 space is homeomorphic to a subset of the Hilbert cube.

Every Gδ-subset of the Hilbert cube is a Polish space, a topological space homeomorphic to a separable and complete metric space. Conversely, every Polish space is homeomorphic to a Gδ-subset of the Hilbert cube.[2]

See also

Notes

  1. ^ Friedman 1981, p. 221.
  2. ^ Srivastava 1998, p. 55.

References

  • Friedman, Harvey (1981). "On the necessary use of abstract set theory" (PDF). Advances in Mathematics. 41 (3): 209–280. doi:10.1016/0001-8708(81)90021-9. Retrieved 19 December 2022.
  • Srivastava, Shashi Mohan (1998). A Course on Borel Sets. Graduate Texts in Mathematics. Springer-Verlag. ISBN 978-0-387-98412-4. Retrieved 2008-12-04.
  • "Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum" [The homomorphism of the compact convex sets in Hilbert space] (in German). EUDML. Archived from the original on 2020-03-02.

Further reading

Read other articles:

Distrik Raja FahdPermukimanDistrik Raja FahdLocation in the Kingdom of Saudi ArabiaKoordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Koordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Negara Arab SaudiPemerintahan • Gubernur Pangeran RiyadhFaisal bin Bandar Al Saud • Wali kotaIbraheem Mohammed Al-SultanKetinggian612 m (2,008 ft)Zona waktuUTC+3 (AST) • Musim …

Anton Diabelli. Anton Diabelli (1781-1858) adalah seorang komponis musik piano dan penerbit karya musik asal Austria.[1] Diabelli dilahirkan di kota Matsee, dekat Salzburg.[2] Pada usia muda, Diabelli sempat dididik untuk menjadi pendeta.[2] Ia juga sempat mendapatkan pelatihan musik dari Michael Haydn.[2] Diabelli kemudian pindah ke Vienna, untuk mengajar piano dan gitar sebelum menjalin hubungan rekan kerja dengan Pietro Cappi.[2] Cappi dan Diabelli bers…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Rindik – berita · surat kabar · buku · cendekiawan · JSTOR Alat Musik Tradisional Bali Rindik merupakan salah satu alat musik tradisional Bali dan telah menjadi ciri khas dari budaya Bali. Berawal ketika pi…

Pembantaian Virginia TechPara mahasiswa berkumpul dalam pertemuan-dukacita setelah penembakan.LokasiBlacksburg, Virginia, Amerika SerikatTanggal16 April 2007 7.15 dan 9.00–9.30 pagi (EDT)SasaranInstitut Politeknik dan Universitas Negeri Virginia (Virginia Tech)Jenis seranganPenembakan di sekolah, pembunuhan massal, pembunuhan diikuti bunuh diri, pembantaian, penembakan liarKorban tewas33 (termasuk pelaku)[1][2]Korban luka29[2]PelakuCho Seung-huiMotifTak diketahui[3&…

Genkai 玄海町Kota kecil BenderaLambangLokasi Genkai di Prefektur SagaNegara JepangWilayahKyūshūPrefektur SagaDistrikHigashimatsuuraLuas • Total35,9 km2 (139 sq mi)Populasi (Oktober 1, 2015) • Total5.902 • Kepadatan164,4/km2 (4,260/sq mi)Zona waktuUTC+09:00 (JST)Kode pos847-1421Simbol  • PohonZelkova serrata • BungaPrunus serrulataNomor telepon0955-52-2111Alamat348 Moroura, Genkai-chō, H…

1931 film Strictly Dishonorable1930 advertisementDirected byJohn M. StahlScreenplay byGladys LehmanBased onStrictly Dishonorable1929 playby Preston SturgesProduced byCarl Laemmle Jr.John M. StahlStarringPaul LukasSidney FoxLewis StoneCinematographyKarl FreundJackson RoseEdited byArthur TavaresMaurice PivarMusic byGiuseppe BecceJ. S. ZamecnikDistributed byUniversal PicturesRelease dateDecember 26, 1931Running time91 minutesCountryUnited StatesLanguageEnglish Strictly Dishonorable is a 1931 Americ…

Pour les articles homonymes, voir Morane-Saulnier et G. Cet article est une ébauche concernant un aéronef et la Première Guerre mondiale. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Morane-Saulnier Type G Morane-Saulnier Type G du musée de l'Air et de l'Espace de l'aéroport de Paris-Le Bourget Constructeur Morane-Saulnier Rôle Avion de sport, puis en 1914 de reconnaissance et d'entraînement Premier vol 19…

ناصر القدوة   وزير الخارجية الفلسطيني في المنصبأبريل 2003 – 2005 الرئيس ياسر عرفات رئيس الوزراء أحمد قريع نبيل شعث محمود الزهار معلومات شخصية الميلاد 16 أبريل 1953 (71 سنة)  غزة  أقرباء ياسر عرفات (خال) الحياة العملية المدرسة الأم جامعة القاهرة  المهنة دبلوماسي،  وسياسي،…

Loess di Vicksburg, Mississippi, Amerika Serikat Loess (dari Bahasa Jerman: Löss) adalah sedimen klastik, sebagian besar berukuran lanau yang dibentuk oleh akumulasi debu yang tertiup angin.[1] Sepuluh persen dari luas daratan bumi ditutupi oleh loess atau endapan serupa.[2] Referensi ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Frechen 2011 ^ Vasiljevic, D. A.; Markovic, S. B.; Hose, T. A.; Smalley, I.; O'Hara-Dhand, K.; Basarin, B.;…

Football stadium in Strasbourg, France You can help expand this article with text translated from the corresponding article in French. (April 2015) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-trans…

Ostmark pada tahun 1941 Ostmark (pelafalan dalam bahasa Jerman: [ˈʔɔstmaʁk] ⓘ, berarti wilayah perbatasan timur) adalah nama yang digunakan oleh Jerman Nazi dari tahun 1938 hingga 1942 untuk menggantikan Negara Federal Austria seusai peristiwa Anschluss. Selayang pandang Setelah Adolf Hitler yang terlahir di Austria berhasil menyatukan negara asalnya dengan Jerman (Anschluss), pemerintah Nazi mengubah nama wilayah ini: nama Austria (Österreich dalam bahasa Jerman, berarti kerajaan…

Kejatuhan SoehartoBagian dari Reformasi Indonesia Searah jarum jam, dari atas: Presiden Indonesia Soeharto menyampaikan pengunduran diri dari jabatannya Para perusuh membakar perabot kantor di jalan-jalan Jakarta Mahasiswa memprotes pemerintah Mahasiswa Universitas Trisakti dan polisi pada bentrok Tanggal4–21 Mei 1998LokasiIndonesiaHasilKejatuhan Orde Baru Presiden Soeharto mengundurkan diri Peresmian B.J. Habibie sebagai presiden Pembentukan Kabinet Reformasi Pembangunan Referendum kemerdekaa…

Football match1999 Coppa Italia FinalEvent1998–99 Coppa Italia Parma Fiorentina 3 3 Parma won on the away goals ruleFirst leg Parma Fiorentina 1 1 Date14 April 1999VenueStadio Ennio Tardini, ParmaRefereeDomenico MessinaAttendance21,038Second leg Fiorentina Parma 2 2 Date5 May 1999VenueStadio Artemio Franchi, FlorenceRefereeStefano BraschiAttendance39,070← 1998 2000 → The 1999 Coppa Italia Final decided the winner of the 1998–99 Coppa Italia, the major domestic tournament in Itali…

Lower house of the Federal Assembly of Russia This article is about the modern Russian assembly. For the historical body, see State Duma (Russian Empire). For other assemblies, see Duma. For other uses, see State Duma (disambiguation) and Duma (disambiguation). State Duma Государственная думаGosudarstvennaya duma8th State DumaTypeTypeLower house HistoryEstablished12 December 1993; 30 years ago (1993-12-12)Preceded bySoviet of the RepublicConstitutional C…

У этого термина существуют и другие значения, см. Амасис. Фараон Древнего ЕгиптаАмасис II Фрагмент статуи Амасиса II. Старый музей. Берлин Династия XXVI (Саисская) династия Исторический период Позднее царство Предшественник Априй Преемник Псамметих III Дети Нитокрис II[d], Псам…

Cantata by J.S. Bach Ein feste Burg ist unser GottBWV 80Chorale cantata by J. S. BachStained glass of Bach receiving inspiration from Luther (right pane); designed by the studio of Franz Mayer & Co. of MunichOccasionReformation DayCantata textSalomon FranckChoraleEin feste Burg ist unser Gottby Martin LutherMovementseightVocalSATB choir and soloInstrumental3 oboes2 oboes d'amoreoboe da cacciastringscontinuo Ein feste Burg ist unser Gott (A Mighty Fortress Is Our God), BWV 80 (also: BWV&…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Non-Military (1st sentence in the artikel) or Military (category). Please help improve this article if you can. (March 2017) (Learn how and when to remove this message) This article includes a list of general references, but it lacks sufficient corr…

Мочковатая корневая система старой пальмы вида Roystonea regia из Калькутта (Индия) Мочковатая корневая система — корневая система, представленная в основном придаточными корнями, у которой не выделяется главный корень. Такой вид корневых систем имеют, например, следующие ра…

Kazakhstani football club For the bandy club, see Akzhayik Sports Club. Football clubAkzhaiyk OralAqjaiyq OralFull nameFootball club Akzhayik OralAqjaiyq Oral Futbol KlubyFounded1968; 56 years ago (1968)GroundPetr Atoyan StadiumCapacity8,320ChairmanRashid KhusnutdinovManagerIgor ProkhnitskiyLeagueFirst League20234th (promoted due to Maktaaral failing licensing process) Home colours Away colours Current season FC Akzhaiyk (Kazakh: Ақжайық Орал Футбол клубы,…

Hall of Fame Tennis Championships 2009 Sport Tennis Data 6 luglio – 12 luglio Edizione 34a Categoria ATP World Tour 250 series Superficie Erba Località Newport, Stati Uniti Campioni Singolare Rajeev Ram Doppio Jordan Kerr / Rajeev Ram 2008 2010 L'Hall of Fame Tennis Championships 2009 (conosciuto anche come Campbell's Hall of Fame Tennis Championships per motivi di sponsorizzazione) è stato un torneo di tennis giocato sull'erba. È stata la 34ª edizione del Hall of Fame Tennis Championships…

Kembali kehalaman sebelumnya