Share to: share facebook share twitter share wa share telegram print page

Richard E. Bellman

Richard Ernest Bellman
Born
Richard Ernest Bellman

(1920-08-26)August 26, 1920
DiedMarch 19, 1984(1984-03-19) (aged 63)
Alma mater
Known forDynamic programming
Stochastic dynamic programming
Curse of dimensionality
Linear search problem
Bellman equation
Bellman–Ford algorithm
Bellman's lost-in-a-forest problem
Bellman–Held–Karp algorithm
Grönwall–Bellman inequality
Hamilton–Jacobi–Bellman equation
AwardsJohn von Neumann Theory Prize (1976)
IEEE Medal of Honor (1979)
Richard E. Bellman Control Heritage Award (1984)
Scientific career
FieldsMathematics, control theory
InstitutionsUniversity of Southern California
Rand Corporation
Stanford University
Thesis On the Boundedness of Solutions of Non-Linear Differential and Difference Equations[1]
Doctoral advisorSolomon Lefschetz[1]
Doctoral studentsChristine Shoemaker[1]

Richard Ernest Bellman[2] (August 26, 1920 – March 19, 1984) was an American applied mathematician, who introduced dynamic programming in 1953, and made important contributions in other fields of mathematics, such as biomathematics. He founded the leading biomathematical journal Mathematical Biosciences, as well as the Journal of Mathematical Analysis and Applications.

Biography

Bellman was born in 1920 in New York City to non-practising[3] Jewish parents of Polish and Russian descent, Pearl (née Saffian) and John James Bellman,[4] who ran a small grocery store on Bergen Street near Prospect Park, Brooklyn.[5] On his religious views, he was an atheist.[6] He attended Abraham Lincoln High School, Brooklyn in 1937,[4] and studied mathematics at Brooklyn College where he earned a BA in 1941. He later earned an MA from the University of Wisconsin. During World War II, he worked for a Theoretical Physics Division group in Los Alamos. In 1946, he received his Ph.D. at Princeton University under the supervision of Solomon Lefschetz.[7] Beginning in 1949, Bellman worked for many years at RAND corporation, and it was during this time that he developed dynamic programming.[8]

Later in life, Richard Bellman's interests began to emphasize biology and medicine, which he identified as "the frontiers of contemporary science". In 1967, he became founding editor of the journal Mathematical Biosciences, which rapidly became (and remains) one of the most important journals in the field of Mathematical Biology. In 1985, the Bellman Prize in Mathematical Biosciences was created in his honor, being awarded biannually to the journal's best research paper.

Bellman was diagnosed with a brain tumor in 1973, which was removed but resulted in complications that left him severely disabled. He was a professor at the University of Southern California, a Fellow in the American Academy of Arts and Sciences (1975),[9] a member of the National Academy of Engineering (1977),[10] and a member of the National Academy of Sciences (1983).

He was awarded the IEEE Medal of Honor in 1979, "for contributions to decision processes and control system theory, particularly the creation and application of dynamic programming".[11] His key work is the Bellman equation.

Work

Bellman equation

A Bellman equation, also known as the dynamic programming equation, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. Almost any problem which can be solved using optimal control theory can also be solved by analyzing the appropriate Bellman equation. The Bellman equation was first applied to engineering control theory and to other topics in applied mathematics, and subsequently became an important tool in economic theory.[12]

Hamilton–Jacobi–Bellman equation

The Hamilton–Jacobi–Bellman equation (HJB) is a partial differential equation which is central to optimal control theory. The solution of the HJB equation is the 'value function', which gives the optimal cost-to-go for a given dynamical system with an associated cost function. Classical variational problems, for example, the brachistochrone problem can be solved using this method as well. The equation is a result of the theory of dynamic programming which was pioneered in the 1950s by Richard Bellman and coworkers. The corresponding discrete-time equation is usually referred to as the Bellman equation. In continuous time, the result can be seen as an extension of earlier work in classical physics on the Hamilton–Jacobi equation by William Rowan Hamilton and Carl Gustav Jacob Jacobi.[13]

Curse of dimensionality

The curse of dimensionality is an expression coined by Bellman to describe the problem caused by the exponential increase in volume associated with adding extra dimensions to a (mathematical) space. One implication of the curse of dimensionality is that some methods for numerical solution of the Bellman equation require vastly more computer time when there are more state variables in the value function. For example, 100 evenly spaced sample points suffice to sample a unit interval with no more than 0.01 distance between points; an equivalent sampling of a 10-dimensional unit hypercube with a lattice with a spacing of 0.01 between adjacent points would require 1020 sample points: thus, in some sense, the 10-dimensional hypercube can be said to be a factor of 1018 "larger" than the unit interval. (Adapted from an example by R. E. Bellman, see below.) [14]

Bellman–Ford algorithm

Though discovering the algorithm after Ford he is referred to in the Bellman–Ford algorithm, also sometimes referred to as the Label Correcting Algorithm, computes single-source shortest paths in a weighted digraph where some of the edge weights may be negative. Dijkstra's algorithm accomplishes the same problem with a lower running time, but requires edge weights to be non-negative.

Publications

Over the course of his career he published 619 papers and 39 books. During the last 11 years of his life he published over 100 papers despite suffering from crippling complications of brain surgery (Dreyfus, 2003). A selection:[4]

  • 1957. Dynamic Programming
  • 1959. Asymptotic Behavior of Solutions of Differential Equations
  • 1961. An Introduction to Inequalities
  • 1961. Adaptive Control Processes: A Guided Tour
  • 1962. Applied Dynamic Programming
  • 1967. Introduction to the Mathematical Theory of Control Processes
  • 1970. Algorithms, Graphs and Computers
  • 1972. Dynamic Programming and Partial Differential Equations
  • 1982. Mathematical Aspects of Scheduling and Applications
  • 1983. Mathematical Methods in Medicine
  • 1984. Partial Differential Equations
  • 1984. Eye of the Hurricane: An Autobiography, World Scientific Publishing.
  • 1985. Artificial Intelligence
  • 1995. Modern Elementary Differential Equations
  • 1997. Introduction to Matrix Analysis
  • 2003. Dynamic Programming
  • 2003. Perturbation Techniques in Mathematics, Engineering and Physics
  • 2003. Stability Theory of Differential Equations (originally publ. 1953)[15]

References

  1. ^ a b c Richard E. Bellman at the Mathematics Genealogy Project
  2. ^ Richard Bellman's Biography
  3. ^ Robert S. Roth, ed. (1986). The Bellman Continuum: A Collection of the Works of Richard E. Bellman. World Scientific. p. 4. ISBN 9789971500900. He was raised by his father to be a religious skeptic. He was taken to a different church every week to observe different ceremonies. He was struck by the contrast between the ideals of various religions and the history of cruelty and hypocrisy done in God's name. He was well aware of the intellectual giants who believed in God, but if asked, he would say that each person had to make their own choice. Statements such as "By the State of New York and God ..." struck him as ludicrous. From his childhood he recalled a particularly unpleasant scene between his parents just before they sent him to the store. He ran down the street saying over and over again, "I wish there was a God, I wish there was a God."
  4. ^ a b c Salvador Sanabria. Richard Bellman profile at http://www-math.cudenver.edu; retrieved October 3, 2008.
  5. ^ Bellman biodata at history.mcs.st-andrews.ac.uk; retrieved August 10, 2013.
  6. ^ Richard Bellman (June 1984). "Growing Up in New York City". Eye Of The Hurricane. World Scientific Publishing Company. p. 7. ISBN 9789814635707. Retrieved 5 July 2021. Naturally, I was raised as an atheist. This was quite easy since the only one in the family that had any religion was my grandmother, and she was of German stock. Although she believed in God, and went to the synagogue on the high holy days, there was no nonsense about ritual. I well remember when I went off to the army, she said, "God will protect you." I smiled politely. She added, "I know you don't believe in God, but he will protect you anyway." I know many sophisticated and highly intelligent people who are practicing Catholics, Protestants, Jews, Mormons, Hindus, Buddhists, etc., feel strongly that religion, or lack of it, is a highly personal matter. My own attitude is like Lagrange's. One day, he was asked by Napoleon whether he believed in God. "Sire," he said, "I have no need of that hypothesis."
  7. ^ Mathematics Genealogy Project
  8. ^ Bellman R: An introduction to the theory of dynamic programming RAND Corp. Report 1953 (Based on unpublished researches from 1949. It contained the first statement of the principle of optimality)
  9. ^ "Book of Members, 1780–2010: Chapter B" (PDF). American Academy of Arts and Sciences. Retrieved April 6, 2011.
  10. ^ "NAE Members Directory – Dr. Richard Bellman profile". NAE. Retrieved April 6, 2011.
  11. ^ "IEEE Medal of Honor Recipients" (PDF). IEEE. Archived from the original (PDF) on June 19, 2010. Retrieved April 6, 2011.
  12. ^ Ljungqvist, Lars; Sargent, Thomas J. (2012). Recursive Macroeconomic Theory (3rd ed.). MIT Press. ISBN 978-0-262-31202-8.
  13. ^ Kamien, Morton I.; Schwartz, Nancy L. (1991). Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management (2nd ed.). Amsterdam: Elsevier. pp. 259–263. ISBN 9780486488561.
  14. ^ Richard Bellman (1961). Adaptive control processes: a guided tour. Princeton University Press.
  15. ^ Haas, F. (1954). "Review: Stability theory of differential equations, by R. Bellman". Bull. Amer. Math. Soc. 60 (4): 400–401. doi:10.1090/s0002-9904-1954-09830-0.

Further reading

Articles

Read other articles:

Lukisan Jendela Suger Abbot Suger (1081 – 13 Januari 1151) adalah seorang kepala biara Prancis. Biografi Suger lahir dalam sebuah keluarga yang miskin dan pada tahun 1091 dibawa ke Basilika Santo Denis untuk pendidikan. Ia disana bertemu dengan orang yang akan menjadi raja pada masa depan, Louis VI dari Prancis. Dari tahun 1104 sampai tahun 1106, Suger memasuki sekolah lain di Biara Saint-Benoît-sur-Loire. Pada tahun 1106 ia menjadi sekretaris dari kepala biara Santo Denis. Dalam beberapa tah…

Taman Nasional Peringatan Pendaratan MacArthurIUCN Kategori V (Lanskap Darat/Laut Lindung)LetakPalo, FilipinaKota terdekatTacloban, Leyte, FilipinaKoordinat11°10′20″N 125°00′44″E / 11.1722°N 125.0122°E / 11.1722; 125.0122Koordinat: 11°10′20″N 125°00′44″E / 11.1722°N 125.0122°E / 11.1722; 125.0122Luas678 hektare (1.680 ekar)Didirikan12 Juli 1977Pihak pengelolaDepartemen Lingkungan Hidup dan Sumber Daya Alam Pemandangan air te…

العلاقات التوفالية السورينامية توفالو سورينام   توفالو   سورينام تعديل مصدري - تعديل   العلاقات التوفالية السورينامية هي العلاقات الثنائية التي تجمع بين توفالو وسورينام.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم…

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan Sud…

Questa voce sull'argomento calciatori ucraini è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jevhen Opanasenko Nazionalità  Ucraina Altezza 180 cm Calcio Ruolo Difensore Squadra  SK Poltava Carriera Giovanili 2001-2003 Krystal Cherson2003-2007 Metalurh Zaporižžja Squadre di club1 2007-2008 Metalurh-2 Zaporižžja27 (2)2008-2014 Metalurh Zaporižžja124 (6)2014-2015 Č…

Stan Pameran Pameran adalah suatu kegiatan penyajian karya seni rupa untuk dikomunikasikan sehingga dapat diapresiasi oleh masyarakat luas.[1] Pameran merupakan suatu bentuk dalam usaha jasa pertemuan, yang mempertemukan antara produsen dan pembeli. Namun pengertian pameran lebih jauh adalah suatu kegiatan promosi yang dilakukan oleh suatu produsen, kelompok, organisasi, perkumpulan tertentu dalam bentuk menampilkan display produk kepada calon relasi atau pembeli. Adapun macam pameran it…

Roman Catholic diocese in Italy Diocese of Arezzo-Cortona-SansepolcroDioecesis Arretina-Cortonensis-Biturgensis seu Burgi Sancti SepulchriArezzo CathedralLocationCountryItalyEcclesiastical provinceFlorenceStatisticsArea3,425 km2 (1,322 sq mi)Population- Total- Catholics(as of 2020)361,760343,835 (95.0%)Parishes246InformationDenominationCatholic ChurchRiteRoman RiteEstablished4th CenturyCathedralCattedrale di Ss. Donato e Pietro (Arezzo)Co-cathedralConcattedrale di S…

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak menyal…

Indian ArrowsBerdiri2010 sebagai AIFF XIStadionSalt Lake Stadium(Kapasitas: 120,000)KetuaAll India Football FederationManajerKosongLigaI-League2012-13I-League, 12th Kostum kandang Kostum tandang Musim ini Indian Arrows adalah tim sepak bola profesional asal India yang bermukim di Kolkata, Bengal. Tim ini berkompetisi di I-League.[1] Skuat terkini Stadion Salt Like Per 7th June 2013..[2] Catatan: Bendera menunjukkan tim nasional sesuai dengan peraturan FIFA. Pemain dapat memiliki …

Artikel ini perlu dikembangkan dari artikel terkait di Wikipedia bahasa Inggris. (April 2024) klik [tampil] untuk melihat petunjuk sebelum menerjemahkan. Lihat versi terjemahan mesin dari artikel bahasa Inggris. Terjemahan mesin Google adalah titik awal yang berguna untuk terjemahan, tapi penerjemah harus merevisi kesalahan yang diperlukan dan meyakinkan bahwa hasil terjemahan tersebut akurat, bukan hanya salin-tempel teks hasil terjemahan mesin ke dalam Wikipedia bahasa Indonesia. Jangan m…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

Pour les articles homonymes, voir Kertesz. Dans le nom hongrois Kertész Imre, le nom de famille précède le prénom, mais cet article utilise l’ordre habituel en français Imre Kertész, où le prénom précède le nom. Imre Kertész Imre Kertész Données clés Naissance 9 novembre 1929 Budapest Royaume de Hongrie Décès 31 mars 2016 (à 86 ans) Budapest Hongrie Activité principale Écrivain Distinctions Prix Nobel de littérature (2002)Prix Attila József (1…

WWE pay-per-view and livestreaming event Survivor SeriesPromotional poster featuring Seth Rollins, Shinsuke Nakamura, Ronda Rousey, Becky Lynch, Brock Lesnar, and AJ StylesPromotionWWEBrand(s)RawSmackDown205 LiveDateNovember 18, 2018CityLos Angeles, CaliforniaVenueStaples CenterAttendance16,320[1]Tagline(s)Raw vs. SmackDownWWE Network event chronology ← PreviousNXT TakeOver: WarGames Next →Starrcade Survivor Series chronology ← Previous2017 Next →2019 The 2018…

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского посел…

Pour les articles homonymes, voir Alerte et Alerte météo. Une alerte météorologique est un bulletin d'avertissement de l'imminence de phénomènes météorologiques dangereux. La plupart des pays ont un tel système de bulletins. Dans certains pays, ceux-ci sont suivis immédiatement de mesures d'urgence et d'alerte aux populations pour mettre à l'abri la population et les biens. Dans d'autres, les autorités vont les utiliser comme informations pour décider des mesures appropriées. Canad…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) بطولة الأمم الخمس 1925 تفاصيل الموسم بطولة الأمم الست  النسخة 38  التاريخ بداية:1 يناير 1925  نهاية:13 أبر…

Liga LEB 2000-2001Dettagli della competizioneSport Pallacanestro OrganizzatoreFederazione cestistica della Spagna Federazione FEB Squadre16 VerdettiCampione Lleida(1º titolo) Promozioni Lleida  Granada Retrocessioni Círculo Badajoz CB Galicia MVP Michael Wilson Miglior allenatore Edu Torres MVP delle finali Óscar Rodríguez Bonache Ultimo aggiornamento dati: 22 maggio 2020 Cronologia della competizioneed. successiva →     ← ed. precedente Mo…

Governor of Susa Puzur-Inshushinak𒅤𒊭𒀭𒈹𒂞Governor of SusaMilitary Governor of ElamKing of ElamStatue of Puzur-Inshushinak (lower half of seated ruler) with inscription in his name and victories, particularly over the king of Shimashki.[1]Reignc. 2100 BCEPredecessorKhitaDynastyKings of Elam Susaclass=notpageimage| Kutik-Inshushinak ruled from Susa 𒅤𒊭𒀭𒈹𒂞 𒑐𒋼𒋛 𒈹𒂞𒆠 𒄊𒀴 𒈣𒋾 𒉏𒆠puzur-inshushinak ensi shushiki skakkanakku mati NIMkiPuz…

This article is part of a series onVatican City History Duchy of Rome (533–751) Donation of Pepin (750s) Papal States (754–1870) Annates Congregation for Borders Fundamental Statute for the Secular Government of the States of the Church Capture of Rome (1870) Prisoner in the Vatican (1870–1929) Roman Question Law of Guarantees Lateran Treaty (1929) Vatican City (1929–present) Governor of Vatican City 2010 Vatican sex scandal History of the Catholic Church since 1962 History of the Papacy…

Kembali kehalaman sebelumnya