Share to: share facebook share twitter share wa share telegram print page

Ring singularity

A ring singularity or ringularity is the gravitational singularity of a rotating black hole, or a Kerr black hole, that is shaped like a ring.[1]

Description of a ring singularity

Event horizons and ergospheres of a rotating black hole; the ringularity is located at the equatorial kink of the inner ergosphere at R=a.

When a spherical non-rotating body of a critical radius collapses under its own gravitation under general relativity, theory suggests it will collapse to a 0-dimensional single point. This is not the case with a rotating black hole (a Kerr black hole). With a fluid rotating body, its distribution of mass is not spherical (it shows an equatorial bulge), and it has angular momentum. Since a point cannot support rotation or angular momentum in classical physics (general relativity being a classical theory), the minimal shape of the singularity that can support these properties is instead a 2D ring with zero thickness but non-zero radius, and this is referred to as a ringularity or Kerr singularity.

A rotating hole's rotational frame-dragging effects, described by the Kerr metric, cause spacetime in the vicinity of the ring to undergo curvature in the direction of the ring's motion. Effectively this means that different observers placed around a Kerr black hole who are asked to point to the hole's apparent center of gravity may point to different points on the ring. Falling objects will begin to acquire angular momentum from the ring before they actually strike it, and the path taken by a perpendicular light ray (initially traveling toward the ring's center) will curve in the direction of ring motion before intersecting with the ring.

Traversability and nakedness

An observer crossing the event horizon of a non-rotating and uncharged black hole (a Schwarzschild black hole) cannot avoid the central singularity, which lies in the future world line of everything within the horizon. Thus, one cannot avoid spaghettification by the tidal forces of the central singularity.

This is not necessarily true with a Kerr black hole. An observer falling into a Kerr black hole may be able to avoid the central singularity by making clever use of the inner event horizon associated with this class of black hole. This makes it theoretically (but not likely practically)[2] possible for the Kerr black hole to act as a sort of wormhole, possibly even a traversable wormhole.[3]

The Kerr singularity as a "toy" wormhole

The Kerr singularity can also be used as a mathematical tool to study the wormhole "field line problem". If a particle is passed through a wormhole, the continuity equations for the electric field suggest that the field lines should not be broken. When an electrical charge passes through a wormhole, the particle's charge field lines appear to emanate from the entry mouth and the exit mouth gains a charge density deficit due to Bernoulli's principle. (For mass, the entry mouth gains mass density and the exit mouth gets a mass density deficit.) Since a Kerr singularity has the same feature, it also allows this issue to be studied.

Existence of ring singularities

It is generally expected that since the usual collapse to a point singularity under general relativity involves arbitrarily dense conditions, quantum effects may become significant and prevent the singularity forming ("quantum fuzz"). Without quantum gravitational effects, there is good reason to suspect that the interior geometry of a rotating black hole is not the Kerr geometry. The inner event horizon of the Kerr geometry is probably not stable, due to the infinite blue-shifting of infalling radiation.[4] This observation was supported by the investigation of charged black holes which exhibited similar "infinite blueshifting" behavior.[5] While much work has been done, the realistic gravitational collapse of objects into rotating black holes, and the resultant geometry, continues to be an active research topic.[6][7][8][9][10]

See also

Further reading

  • Thorne, Kip, Black Holes and Time Warps: Einstein's Outrageous Legacy, W. W. Norton & Company; Reprint edition, January 1, 1995, ISBN 0-393-31276-3.
  • Matt Visser, Lorentzian Wormholes: from Einstein to Hawking (AIP press, 1995)

References

  1. ^ Sukys, Paul (1999). Lifting the Scientific Veil. Rowman & Littlefield. p. 533. ISBN 978-0-8476-9600-0.
  2. ^ Roy Kerr: Spinning Black Holes (Lecture at the University of Canterbury, timecode 49m8s
  3. ^ Kaufmann, William J. III (1977). The Cosmic Frontiers of General Relativity. Boston, Toronto: Little, Brown and Company (Inc.). p. 178,9.
  4. ^ Penrose, R. (1968). de Witt, C.; Wheeler, J. (eds.). Battelle Rencontres. New York: W. A. Benjamin. p. 222.
  5. ^ Poisson, E.; Israel, W. (1990). "Internal structure of black holes". Phys. Rev. D. 41 (6): 1796–1809. Bibcode:1990PhRvD..41.1796P. doi:10.1103/PhysRevD.41.1796. PMID 10012548.
  6. ^ Hod, Shahar; Tsvi Piran (1998). "The Inner Structure of Black Holes". Gen. Rel. Grav. 30 (11): 1555. arXiv:gr-qc/9902008. Bibcode:1998GReGr..30.1555H. doi:10.1023/A:1026654519980. S2CID 7001639.
  7. ^ Ori, Amos (1999). "Oscillatory Null Singularity inside Realistic Spinning Black Holes". Physical Review Letters. 83 (26): 5423–5426. arXiv:gr-qc/0103012. Bibcode:1999PhRvL..83.5423O. doi:10.1103/PhysRevLett.83.5423. S2CID 15112314.
  8. ^ Brady, Patrick R; Serge Droz; Sharon M Morsink (1998). "The late-time singularity inside non-spherical black holes". Physical Review D. 58 (8): 084034. arXiv:gr-qc/9805008. Bibcode:1998PhRvD..58h4034B. doi:10.1103/PhysRevD.58.084034. S2CID 118307468.
  9. ^ Novikov, Igor D. (2003). "Developments in General Relativity: Black Hole Singularity and Beyond". Texas in Tuscany: 77–90. arXiv:gr-qc/0304052. Bibcode:2003tsra.symp...77N. doi:10.1142/9789812704009_0008. ISBN 978-981-238-580-2. S2CID 17200476.
  10. ^ Burko, Lior M.; Amos Ori (1995-02-13). "Are physical objects necessarily burnt up by the blue sheet inside a black hole?". Physical Review Letters. 74 (7): 1064–1066. arXiv:gr-qc/9501003. Bibcode:1995PhRvL..74.1064B. doi:10.1103/PhysRevLett.74.1064. PMID 10058925. S2CID 13887924.

Read other articles:

AnjiAnji di tahun 2016LahirErdian Aji Prihartanto5 Oktober 1978 (umur 45)Jakarta, IndonesiaNama lainAnjiManjiDunia ManjiPekerjaan Penyanyi Aktivis media sosial Tahun aktif2004–sekarangSuami/istri Sheila Marcia Joseph (putus) Wina Natalia ​(m. 2012)​ Anak3 Erdian Aji Prihartanto, atau yang dikenal dengan nama Anji dan Manji (lahir 5 Oktober 1978), adalah penyanyi dan aktivis media sosial asal Indonesia. Dan Juga merupakan mantan Vokalis Dari Grup Musi…

No debe confundirse con Tiempo atmosférico. Este artículo trata sobre climas terrestres y Climatología en general. Para el cambio del clima terrestre, véase calentamiento global. Climas terrestres Clasificación de Köppen Tropical Seco Templado Continental Polar      Af      Am      Aw/As      BWh      BWk      BSh     …

وُثقت الانتهاكات الجنسية أثناء تحرير فرنسا أثناء وبعد تقدم قوات الولايات المتحدة الأمريكية عبر فرنسا في مواجهة ألمانيا النازية في المراحل اللاحقة في الحرب العالمية الثانية. لمحة تاريخية وضع غزو نورماندي في حزيران وعملية دراغون في الجنوب في آب أكثر من مليوني جندي من قوات ال…

Tindik nostrilTindik septum Tindik hidung adalah suatu tindik yang dibuat pada kulit atau tulang rawan yang membentuk struktur hidung manusia, biasanya untuk dipasangi perhiasan seperti anting, plug, atau aksesoris lainnya. Tindik hidung yang populer yaitu di bagian cuping hidung, melewati nostril (lubang hidung). Jenis tindik lainnya yaitu di bagian septum nasal, yaitu tulang rawan yang memisahkan lubang hidung kanan dan kiri. Antropologi Tindik hidung merupakan modifikasi tubuh yang populer, t…

American politician (1867–1950) For the politician from New York, see Frank L. Smith (New York politician). Frank SmithUnited States Senator-electfrom IllinoisIn officeNot seatedPreceded byWilliam B. McKinleySucceeded byOtis F. GlennMember of the U.S. House of Representativesfrom Illinois's 17th districtIn officeMarch 4, 1919 – March 3, 1921Preceded byJohn Allen SterlingSucceeded byFrank H. Funk Personal detailsBornFrank Leslie Smith(1867-11-24)November 24, 1867Dwight, I…

Street in Sydney, Australia Sussex StreetNew South WalesCorn Exchange, built in 1887Northern endSouthern endCoordinates 33°51′51″S 151°12′11″E / 33.864078°S 151.203070°E / -33.864078; 151.203070 (Northern end) 33°52′46″S 151°12′17″E / 33.879507°S 151.204714°E / -33.879507; 151.204714 (Southern end) General informationTypeStreetLength1.7 km (1.1 mi)Major junctionsNorthern endHickson RoadBarangaroo, Sydney…

Jalan Kebon Sirih antara tahun 1908 sampai 1930 Salah satu kuliner yang berada di Jalan Kebon Sirih, Nasi Goreng Kambing Kebon Sirih. Jalan Kebon Sirih adalah salah satu jalan utama di Jakarta. Jalan ini menghubungkan Tanah Abang di barat dan Kwitang di timur. Jalan ini melintang dari barat ke timur sepanjang 1,9 kilometer dari persimpangan Jalan Abdul Muis dan Jalan Jatibaru sampai persimpangan Tugu Tani. Jalan ini berada di Jakarta Pusat. Jalan ini melintasi tiga kelurahan: Gambir, Gambir, Jak…

Chronologies Données clés 1592 1593 1594  1595  1596 1597 1598Décennies :1560 1570 1580  1590  1600 1610 1620Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature et Musique classique   Ingénierie (), Architecture et ()   Politique Droit   Religion (,)   Science Santé et médecine  …

American college football season 1984 Boston College Eagles footballCotton Bowl Classic championEastern championCotton Bowl Classic, W 45–28 vs. HoustonConferenceIndependentRankingCoachesNo. 4APNo. 5Record10–2Head coachJack Bicknell (4th season)Defensive coordinatorSeymour Red Kelin (4th season)Captains Mark MacDonald David Thomas Scott Harrington Home stadiumAlumni Stadium Sullivan StadiumSeasons← 19831985 → 1984 Major eastern college football …

Bunglon jambul hijau Bronchocela cristatella Status konservasiRisiko rendahIUCN195318 TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSquamataFamiliAgamidaeGenusBronchocelaSpesiesBronchocela cristatella Kuhl, 1820 lbs Bunglon jambul hijau (Bronchocela cristatella) adalah sejenis bunglon dari suku Agamidae yang terdapat Asia Tenggara.[1] Pengenalan Bunglon jambul hijau dapat tumbuh mencapai panjang sekitar 57 cm (22 inci). Pada leher atasnya terdapat sederet jambul berwarna hi…

Ninth-generation smartphone by Apple Inc iPhone 6siPhone 6s PlusiPhone 6s in Rose GoldBrandApple Inc.ManufacturerFoxconn (on contract)SloganThe only thing that’s changed is everything.[1]One powerful phone[2]Generation9thModel6s: A1633 (North America) A1688 (International)A1700 (China)6s Plus:A1634 (North America)A1687 (International)A1699 (China)Compatible networksGSM, CDMA, 3G, EVDO, HSPA+, LTE/4G, LTE Advanced/4G+First releasedSeptember 25, 2015; 8 years ago…

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Pietro Dalio Pietro Dalio (a destra) con il fratello Francesco all'epoca della militanza nel Gozzano Nazionalità  Italia Calcio Ruolo Centrocampista Termine carriera 1966 Carriera Giovanili  Gozzano Squadre di club1 1949-1951 Omegna64 (7)1951-1952 Biellese22 (4)1952-1953 Omegna27 (0)1953…

Capital and the largest city of the Cayman Islands This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: George Town, Cayman Islands – news · newspapers · books · scholar · JSTOR (January 2020) (Learn how and when to remove this message) Place in Cayman Islands, United KingdomGeorge Town Top: George Town skyline; top…

Mindfulness teacher Vidyamala BurchBorn1959 (age 64–65)Wellington, New ZealandNationalityNew ZealanderBritishKnown forFounder of Mindfulness-Based Pain Management Founder of BreathworksWorksLiving Well with Pain and IllnessMindfulness for HealthMindfulness for Women Prudence Margaret Burch OBE (born 1959), known professionally as Vidyamala Burch, is a mindfulness teacher, writer, and co-founder of Breathworks, an international mindfulness organization known particularly for devel…

Disambiguazione – Se stai cercando altri significati, vedi Deserto (disambigua). Distribuzione dei deserti      Deserto      Steppa (latitudini temperate) - Savana (latitudini tropicali)      Tundra      Clima glaciale In geografia, il deserto è definito come un'area della superficie terrestre, quasi o del tutto disabitata, di alta pressione atmosferica da cui le masse d'aria si allontanano sos…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Corporate Europe Observatory – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to r…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Sainte-Mère-Église Vue de l'église Notre-Dame. Blason Administration Pays France Région Normandie Département Manche Arrondissement Cherbourg Intercommunalité Communauté de communes de la Baie du Cotentin Maire Mandat Alain Holley 2020-2026 Code postal 50480 Code commune 50523 Démographie Gentilé Sainte-Mère-Églisais Populationmunicipale 2 965 hab. (2021) Densité 57 hab./km2 Géographie Coordonnées 49° 24′ 32″ nord, 1° 19′ 04″ o…

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,​…

الملكة برنيكي الثانيةBerenice II عملة ذهبية للملكة برينيكي الثانية معلومات شخصية الميلاد 267 – 266 ق.مشحات  تاريخ الوفاة 221 ق.م الزوج الملك بطليموس الثالث الأولاد بطليموس الرابعآرسينوي الثالثة  الأب ماجاس ملك قورينائية  الأم أباما الثانية  عائلة الملك ماجاس الحياة العمل…

Kembali kehalaman sebelumnya