Share to: share facebook share twitter share wa share telegram print page

Singular point of a curve

In geometry, a singular point on a curve is one where the curve is not given by a smooth embedding of a parameter. The precise definition of a singular point depends on the type of curve being studied.

Algebraic curves in the plane

Algebraic curves in the plane may be defined as the set of points (x, y) satisfying an equation of the form where f is a polynomial function If f is expanded as If the origin (0, 0) is on the curve then a0 = 0. If b1 ≠ 0 then the implicit function theorem guarantees there is a smooth function h so that the curve has the form y = h(x) near the origin. Similarly, if b0 ≠ 0 then there is a smooth function k so that the curve has the form x = k(y) near the origin. In either case, there is a smooth map from to the plane which defines the curve in the neighborhood of the origin. Note that at the origin so the curve is non-singular or regular at the origin if at least one of the partial derivatives of f is non-zero. The singular points are those points on the curve where both partial derivatives vanish,

Regular points

Assume the curve passes through the origin and write Then f can be written If is not 0 then f = 0 has a solution of multiplicity 1 at x = 0 and the origin is a point of single contact with line If then f = 0 has a solution of multiplicity 2 or higher and the line or is tangent to the curve. In this case, if is not 0 then the curve has a point of double contact with If the coefficient of x2, is 0 but the coefficient of x3 is not then the origin is a point of inflection of the curve. If the coefficients of x2 and x3 are both 0 then the origin is called point of undulation of the curve. This analysis can be applied to any point on the curve by translating the coordinate axes so that the origin is at the given point.[1]

Double points

Three limaçons illustrating the types of double point. When converted to Cartesian coordinates as the left curve acquires an acnode at the origin, which is an isolated point in the plane. The central curve, the cardioid, has a cusp at the origin. The right curve has a crunode at the origin and the curve crosses itself to form a loop.

If b0 and b1 are both 0 in the above expansion, but at least one of c0, c1, c2 is not 0 then the origin is called a double point of the curve. Again putting f can be written Double points can be classified according to the solutions of

Crunodes

If has two real solutions for m, that is if then the origin is called a crunode. The curve in this case crosses itself at the origin and has two distinct tangents corresponding to the two solutions of The function f has a saddle point at the origin in this case.

Acnodes

If has no real solutions for m, that is if then the origin is called an acnode. In the real plane the origin is an isolated point on the curve; however when considered as a complex curve the origin is not isolated and has two imaginary tangents corresponding to the two complex solutions of The function f has a local extremum at the origin in this case.

Cusps

If has a single solution of multiplicity 2 for m, that is if then the origin is called a cusp. The curve in this case changes direction at the origin creating a sharp point. The curve has a single tangent at the origin which may be considered as two coincident tangents.

Further classification

The term node is used to indicate either a crunode or an acnode, in other words a double point which is not a cusp. The number of nodes and the number of cusps on a curve are two of the invariants used in the Plücker formulas.

If one of the solutions of is also a solution of then the corresponding branch of the curve has a point of inflection at the origin. In this case the origin is called a flecnode. If both tangents have this property, so is a factor of then the origin is called a biflecnode.[2]

Multiple points

A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t)

In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point. The curve will have, in general, k tangents at the origin though some of these tangents may be imaginary.[3]

Parametric curves

A parameterized curve in is defined as the image of a function The singular points are those points where

A cusp in the semicubical parabola

Many curves can be defined in either fashion, but the two definitions may not agree. For example, the cusp can be defined on an algebraic curve, or on a parametrised curve, Both definitions give a singular point at the origin. However, a node such as that of at the origin is a singularity of the curve considered as an algebraic curve, but if we parameterize it as then never vanishes, and hence the node is not a singularity of the parameterized curve as defined above.

Care needs to be taken when choosing a parameterization. For instance the straight line y = 0 can be parameterised by which has a singularity at the origin. When parametrised by it is nonsingular. Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve.

The above definitions can be extended to cover implicit curves which are defined as the zero set of a smooth function, and it is not necessary just to consider algebraic varieties. The definitions can be extended to cover curves in higher dimensions.

A theorem of Hassler Whitney[4][5] states

Theorem —  Any closed set in occurs as the solution set of for some smooth function

Any parameterized curve can also be defined as an implicit curve, and the classification of singular points of curves can be studied as a classification of singular points of an algebraic variety.

Types of singular points

Some of the possible singularities are:

  • An isolated point: an acnode
  • Two lines crossing: a crunode
  • A cusp: also called a spinode
  • A tacnode:
  • A rhamphoid cusp:

See also

References

  1. ^ Hilton Chapter II §1
  2. ^ Hilton Chapter II §2
  3. ^ Hilton Chapter II §3
  4. ^ Th. Bröcker, Differentiable Germs and Catastrophes, London Mathematical Society. Lecture Notes 17. Cambridge, (1975)
  5. ^ Bruce and Giblin, Curves and singularities, (1984, 1992) ISBN 0-521-41985-9, ISBN 0-521-42999-4 (paperback)

Read other articles:

Eleanor dari SkotlandiaAdipati Utama AustriaBerkuasa1449 - 1480WangsaStuartAyahJames I dari SkotlandiaIbuJoan BeaufortPasanganSiegmund dari Austria Eleanor dari Skotlandia (1433 – Innsbruck 20 November 1480) merupakan putri James I dari Skotlandia dan Joan Beaufort. Ia adalah seorang Adipati Utama Austria melalui pernikahan dan seorang penerjemah terkenal. Kehidupan awal Eleanor adalah anak keenam James I dari Skotlandia dan Joan Beaufort.[1] James I dikenal karena kecintaannya pada sa…

Прямоугольная (декартова) система координат. Четыре точки отмечены в системе координат: (2, 3) зеленого цвета, (−3, 1) красного, (−1.5, −2.5) синего, и начало координат (0, 0) пурпурного. Прямоуго́льная (декартова) систе́ма координа́т — прямолинейная система координат с взаимно п…

أطلقت ستيفاني ويليامز، بصفتها الممثلة الخاصة للأمين العام للأمم المتحدة بالإنابة في ليبيا ونائبة رئيس بعثة الأمم المتحدة للدعم في ليبيا، منتدى الحوار السياسي الليبي في أواخر عام 2020. ملتقى الحوار السياسي الليبي (LPDF) هو سلسلة اجتماعات ليبية داخلية بدأت في أواخر عام 2020، بهدف ا…

1967 live album by Ella Fitzgerald Ella and Duke at the Cote D'AzurLive album by Ella Fitzgerald and Duke EllingtonReleased1967RecordedJune 26-July 29, 1966GenreJazzLength497:02LabelVerveProducerNorman GranzElla Fitzgerald and Duke Ellington chronology Whisper Not(1967) Ella and Duke at the Cote D'Azur(1967) Brighten the Corner(1967) Duke Ellington chronology In the Uncommon Market(1963-66) Ella and Duke at the Cote D' Azur(1966) The Far East Suite(1966) Professional ratingsReview scoresSour…

Wuchang 武昌区Wu-ChangDistrikPanorama Wuchang dilihat dari Danau TimurWuchangLokasinya di HubeiKoordinat: 30°33′43″N 114°20′25″E / 30.5619°N 114.3404°E / 30.5619; 114.3404Koordinat: 30°33′43″N 114°20′25″E / 30.5619°N 114.3404°E / 30.5619; 114.3404[1]NegaraRepublik Rakyat TiongkokProvinsiHubeiKota subprovinsiWuhanLuas[2] • Total87,42 km2 (3,375 sq mi)Populasi (2010)[3]…

Defunct US film production and distribution company This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Trimark Pictures – news · newspapers · books · scholar · JSTOR (July 2007) (Learn how and when to remove this template message) Trimark PicturesFormerlyVidmark Entertainment (1984–1989)Company typeSubsidiaryInd…

Disambiguazione – Stadio comunale di Piacenza rimanda qui. Se stai cercando il nuovo stadio comunale di Piacenza, vedi stadio Leonardo Garilli. Stadio comunaleBarriera Genova L'impianto in una cartolina illustrata degli anni sessanta Informazioni generaliStato Italia UbicazioneBarriera GenovaPiacenza Inizio lavori1920 Inaugurazione1920 Demolizione1970 Ristrutturazione19331945-1950 ProprietarioComune di Piacenza[1] Prog. strutturaleArturo Veneziani[2] Informazioni t…

Questa voce sull'argomento contee dell'Ohio è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di Sciotocontea Contea di Scioto – VedutaScioto County courthouse LocalizzazioneStato Stati Uniti Stato federato Ohio AmministrazioneCapoluogoPortsmouth Data di istituzione1803 TerritorioCoordinatedel capoluogo38°48′36″N 82°59′24″W / 38.81°N 82.99°W38.81; -82.99 (Contea di Scioto)Coordinate: 38°48′36″N 82°59′…

Dutch footballer (born 2001) Jurriën Timber Timber playing for Ajax in 2023Personal informationFull name Jurriën David Norman Timber[1]Date of birth (2001-06-17) 17 June 2001 (age 22)[2]Place of birth Utrecht, NetherlandsHeight 1.79 m (5 ft 10 in)[3]Position(s) DefenderTeam informationCurrent team ArsenalNumber 12Youth career DVSU2008–2014 Feyenoord2014–2018 AjaxSenior career*Years Team Apps (Gls)2018–2021 Jong Ajax 39 (0)2019–2023 Ajax 85 (6…

Cockpit instrumentation display videos from US Navy jets, widely publicized as UFOs FLIR video, Nov 2004 GIMBAL video, Jan 2015 GOFAST video, Jan 2015 The Pentagon UFO videos are selected visual recordings of FLIR targeting from United States Navy fighter jets based aboard aircraft carriers USS Nimitz and USS Theodore Roosevelt in 2004, 2014 and 2015, with additional footage taken by other Navy personnel in 2019. The four grainy, monochromic videos, widely characterized as officially documenting…

Governo MontiFoto ufficiale scattata dopo la cerimonia di giuramento al Palazzo del Quirinale Stato Italia Presidente del ConsiglioMario Monti(Ind., dal 28/12/2012 SC) CoalizioneAppoggio esterno:PdL, PD, UdC, FLI, ApI, RI, MpA, Fareitalia, PID, PLI, PRI, LD, AdC, PSI, MAIE, IdV (fino al 16/12/2011) LegislaturaXVI legislatura Giuramento16 novembre 2011 Dimissioni21 dicembre 2012 Governo successivoLetta28 aprile 2013 Berlusconi IV Letta Il governo Monti è stato il sessantunesimo esecutivo de…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Welshly Arms – news · newspapers · books · scholar · JSTOR (July 2017) (Learn how and when to remove this message) American rock band Welshly ArmsBackground informationOriginCleveland, Ohio, United StatesGenresAlternative rock, blues rock, soul, indie rockYears ac…

Timeframe of Japanese history Part of a series on theHistory of Japan ListPaleolithicbefore 14,000 BCJōmon14,000 – 1000 BCYayoi 1000 BC – 300 ADKofun 300 AD – 538 ADAsuka 538 – 710Nara 710 – 794HeianFormer Nine Years' WarLater Three-Year WarGenpei War 794–1185KamakuraJōkyū WarMongol invasionsGenkō WarKenmu Restoration 1185–1333MuromachiNanboku-chō periodSengoku period 1336–1573Azuchi–Momoyama Nanban tradeImjin WarBattle of Sekigahara 1573…

American defunct consumer good company Sara Lee redirects here. For other uses, see Sara Lee (disambiguation). Sara Lee CorporationCompany typePrivateTraded asNYSE: SLEIndustryConsumer goodsFounded1939Defunct2012FateSplitSuccessors Hillshire Brands D.E Master Blenders 1753 Grupo Bimbo HeadquartersDowners Grove, Illinois, U.S.Key peopleJan Bennink (chairman)Marcel Smits (CEO)ProductsFood, beverage, and household and body care products The Sara Lee Corporation was an American consumer-goods compan…

Pour les articles homonymes, voir Tissot. James TissotJames Tissot, Autoportrait (1865),San Francisco, California Palace of the Legion of Honor.BiographieNaissance 15 octobre 1836Nantes (Loire-Atlantique, Monarchie de Juillet)Décès 8 août 1902 (à 65 ans)Chenecey-Buillon (Doubs, France)Sépulture Château de BuillonNom de naissance Jacques-Joseph TissotPseudonyme CoïdéNationalité FranceFormation Lycée Saint-François-XavierÉcole nationale supérieure des beaux-artsActivité Peintre,…

Chiesa della Beata Maria Verginedi tutte le GrazieStato Italia RegioneSicilia LocalitàFavara Coordinate37°18′37.48″N 13°39′13.86″E / 37.31041°N 13.65385°E37.31041; 13.65385Coordinate: 37°18′37.48″N 13°39′13.86″E / 37.31041°N 13.65385°E37.31041; 13.65385 Religionecattolica TitolareMadonna delle Grazie Arcidiocesi Agrigento Consacrazione25 dicembre 1975 Inizio costruzione1661 - 1970 circa (ricostruzione) Completamento1975 Demolizione197…

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Ballabh …

CAMAC modules made by LeCroy Computer-Aided Measurement And Control (CAMAC) is a standard bus and modular-crate electronics standard for data acquisition and control used in particle detectors for nuclear and particle physics and in industry. The bus allows data exchange between plug-in modules (up to 24 in a single crate) and a crate controller, which then interfaces to a PC or to a VME-CAMAC interface. The standard was originally defined by the ESONE Committee[1] as standard EUR 4100 i…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Kembali kehalaman sebelumnya