Share to: share facebook share twitter share wa share telegram print page

Stereolithography

Schematic representation of Stereolithography: a light-emitting device a) A laser or DLP selectively illuminates the transparent bottom c) of a tank b) filled with a liquid photo-polymerizing resin. The solidified resin d) is progressively dragged up by a lifting platform e)
An SLA produced part
An SLA printed model of a circuit board with various components to simulate the final product.

Stereolithography (SLA or SL; also known as vat photopolymerisation,[1] optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photochemical processes by which light causes chemical monomers and oligomers to cross-link together to form polymers.[2] Those polymers then make up the body of a three-dimensional solid. Research in the area had been conducted during the 1970s, but the term was coined by Chuck Hull in 1984 when he applied for a patent on the process, which was granted in 1986.[3] Stereolithography can be used to create prototypes for products in development, medical models, and computer hardware, as well as in many other applications. While stereolithography is fast and can produce almost any design, it can be expensive.[citation needed]

History

Stereolithography or "SLA" printing is an early and widely used 3D printing technology. In the early 1980s, Japanese researcher Hideo Kodama first invented the modern layered approach to stereolithography by using ultraviolet light to cure photosensitive polymers.[4][5] In 1984, just before Chuck Hull filed his own patent, Alain Le Mehaute, Olivier de Witte and Jean Claude André filed a patent for the stereolithography process.[6] The French inventors' patent application was abandoned by the French General Electric Company (now Alcatel-Alsthom) and CILAS (The Laser Consortium). Le Mehaute believes that the abandonment reflects a problem with innovation in France.[7][8]

The term “stereolithography” (Greek: stereo-solid and lithography) was coined in 1984 by Chuck Hull when he filed his patent for the process.[2][9] Hull patented stereolithography as a method of creating 3D objects by successively "printing" thin layers of an object using a medium curable by ultraviolet light, starting from the bottom layer to the top layer. Hull's patent described a concentrated beam of ultraviolet light focused onto the surface of a vat filled with a liquid photopolymer. The beam is focused onto the surface of the liquid photopolymer, creating each layer of the desired 3D object by means of crosslinking (generation of intermolecular bonds in polymers). It was invented with the intent of allowing engineers to create prototypes of their designs in a more time effective manner.[4][10] After the patent was granted in 1986,[2] Hull co-founded the world's first 3D printing company, 3D Systems, to commercialize it.[11]

Stereolithography's success in the automotive industry allowed 3D printing to achieve industry status and the technology continues to find innovative uses in many fields of study.[10][12] Attempts have been made to construct mathematical models of stereolithography processes and to design algorithms to determine whether a proposed object may be constructed using 3D printing.[13]

Technology

Stereolithography is an additive manufacturing process that, in its most common form, works by focusing an ultraviolet (UV) laser on to a vat of photopolymer resin.[14] With the help of computer aided manufacturing or computer-aided design (CAM/CAD) software,[15] the UV laser is used to draw a pre-programmed design or shape on to the surface of the photopolymer vat. Photopolymers are sensitive to ultraviolet light, so the resin is photochemically solidified and forms a single layer of the desired 3D object.[16] Then, the build platform lowers one layer and a blade recoats the top of the tank with resin.[5] This process is repeated for each layer of the design until the 3D object is complete. Completed parts must be washed with a solvent to clean wet resin from their surfaces.[17]

It is also possible to print objects "bottom up" by using a vat with a transparent bottom and focusing the UV or deep-blue polymerization laser upward through the bottom of the vat.[17] An inverted stereolithography machine starts a print by lowering the build platform to touch the bottom of the resin-filled vat, then moving upward the height of one layer. The UV laser then writes the bottom-most layer of the desired part through the transparent vat bottom. Then the vat is "rocked", flexing and peeling the bottom of the vat away from the hardened photopolymer; the hardened material detaches from the bottom of the vat and stays attached to the rising build platform, and new liquid photopolymer flows in from the edges of the partially built part. The UV laser then writes the second-from-bottom layer and repeats the process. An advantage of this bottom-up mode is that the build volume can be much bigger than the vat itself, and only enough photopolymer is needed to keep the bottom of the build vat continuously full of photopolymer. This approach is typical of desktop SLA printers, while the right-side-up approach is more common in industrial systems.[5]

Stereolithography requires the use of supporting structures which attach to the elevator platform to prevent deflection due to gravity, resist lateral pressure from the resin-filled blade, or retain newly created sections during the "vat rocking" of bottom up printing. Supports are typically created automatically during the preparation of CAD models and can also be made manually. In either situation, the supports must be removed manually after printing.[5]

Other forms of stereolithography build each layer by LCD masking, or using a DLP projector.[18][19]

Materials

The liquid materials used for SLA printing are commonly referred to as "resins" and are thermoset polymers. A wide variety of resins are commercially available and it is also possible to use homemade resins to test different compositions for example. Material properties vary according to formulation configurations: "materials can be soft or hard, heavily filled with secondary materials like glass and ceramic, or imbued with mechanical properties like high heat deflection temperature or impact resistance".[20] Recently,[when?] some studies have tested the possibility to green[21] or reusable[22] materials to produce "sustainable" resins. It is possible to classify the resins in the following categories:[23]

  • Standard resins, for general prototyping
  • Engineering resins, for specific mechanical and thermal properties
  • Dental and medical resins, for biocompatibility certifications
  • Castable resins, for zero ash-content after burnout
  • Biomaterial resins, formulated as aqueous solutions of synthetic polymers like polyethylene glycol, or biological polymers such as gelatin, dextran, or hyaluronic acid.

Uses

Medical modeling

Stereolithographic model of a skull

Stereolithographic models have been used in medicine since the 1990s,[24] for creating accurate 3D models of various anatomical regions of a patient, based on data from computer scans.[25] Medical modelling involves first acquiring a CT, MRI, or other scan.[26] This data consists of a series of cross sectional images of the human anatomy. In these images different tissues show up as different levels of grey. Selecting a range of grey values enables specific tissues to be isolated. A region of interest is then selected and all the pixels connected to the target point within that grey value range are selected. This enables a specific organ to be selected. This process is referred to as segmentation. The segmented data may then be translated into a format suitable for stereolithography.[27] While stereolithography is normally accurate, the accuracy of a medical model depends on many factors, especially the operator performing the segmentation correctly. There are potential errors possible when making medical models using stereolithography but these can be avoided with practice and well trained operators.[28]

Stereolithographic models are used as an aid to diagnosis, preoperative planning and implant design and manufacture. This might involve planning and rehearsing osteotomies, for example. Surgeons use models to help plan surgeries[29] but prosthetists and technologists also use models as an aid to the design and manufacture of custom-fitting implants. For instance, medical models created through stereolithography can be used to help in the construction of Cranioplasty plates.[30][31]

In 2019, scientists at Rice University published an article in the journal Science, presenting soft hydrogel materials for stereolithography used in biological research applications.[32]

Prototyping

Stereolithography is often used for prototyping parts. For a relatively low price, stereolithography can produce accurate prototypes, even of irregular shapes.[33] Businesses can use those prototypes to assess the design of their product or as publicity for the final product.[29]

Advantages and disadvantages

Advantages

One of the advantages of stereolithography is its speed; functional parts can be manufactured within a day.[10] The length of time it takes to produce a single part depends upon the complexity of the design and the size. Printing time can last anywhere from hours to more than a day.[10] SLA printed parts, unlike those obtained from FFF/FDM, do not exhibit significant anisotropy and there's no visible layering pattern. The surface quality is, in general, superior. Prototypes and designs made with stereolithography are strong enough to be machined[34][35] and can also be used to make master patterns for injection molding or various metal casting processes.[34]

Disadvantages

Although stereolithography can be used to produce virtually any synthetic design,[15] it is often costly, though the price is coming down. Since 2012,[36] however, public interest in 3D printing has inspired the design of several consumer SLA machines which can cost considerably less. Beginning in 2016, substitution of the SLA and DLP methods using a high resolution, high contrast LCD panel has brought prices down to below US$200. The layers are created in their entirety since the entire layer is displayed on the LCD screen and is exposed using UV LEDs that lie below. Resolutions of .01mm are attainable. Another disadvantage is that the photopolymers are sticky, messy, and need to be handled with care.[37] Newly made parts need to be washed, further cured, and dried. The environmental impact of all these processes requires more study to be understood, but in general SLA technologies have not created any biodegradable or compostable forms of resin, while other 3-D printing methods offer some compostable PLA options. The choice of materials is limited compared to FFF, which can process virtually any thermoplastic.

See also

References

  1. ^ ISO/ASTM 52900 Standard. Additive manufacturing. General principles. Fundamentals and vocabulary.
  2. ^ a b c U.S. Patent 4,575,330 (“Apparatus for Production of Three-Dimensional Objects by Stereolithography”)
  3. ^ "US Patent for Apparatus for production of three-dimensional objects by stereolithography Patent (Patent # 4,575,330 issued March 11, 1986) - Justia Patents Search". patents.justia.com. Retrieved 2019-04-24.
  4. ^ a b Gibson, Ian, and Jorge Bártolo, Paulo. “History of Stereolithography.” Stereolithography: Materials, Processes, and Applications. (2011): 41-43. Print. 7 October 2015.
  5. ^ a b c d "The Ultimate Guide to Stereolithography (SLA) 3D Printing". Formlabs. Formlabs, Inc. Retrieved 26 December 2017.
  6. ^ Jean-Claude, Andre. "Disdpositif pour realiser un modele de piece industrielle". National De La Propriete Industrielle.
  7. ^ Moussion, Alexandre (2014). "Interview d'Alain Le Méhauté, l'un des pères de l'impression 3D". Primante 3D.
  8. ^ Mendoza, Hannah Rose (May 15, 2015). "Alain Le Méhauté, The Man Who Submitted Patent For SLA 3D Printing Before Chuck Hull". 3dprint.com. 3DR Holdings, LLC.
  9. ^ "Stereolithography / 3D Printing / Additive Fabrication". Photopolymers. Savla Associates. Archived from the original on 14 February 2008. Retrieved 10 August 2017.
  10. ^ a b c d Hull, Chuck (2012). "On Stereolithography". Virtual and Physical Prototyping. 7 (3): 177. doi:10.1080/17452759.2012.723409. S2CID 219623097.
  11. ^ "Our Story". 3D Systems. 3D Systems, Inc. 12 January 2017. Retrieved 10 August 2017.
  12. ^ Jacobs, Paul F. “Introduction to Rapid Prototyping and Manufacturing.” Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography. 1st Ed. (1992): 4-6. Print. 7 October 2015.
  13. ^ B. Asberg, G. Blanco, P. Bose, J. Garcia-Lopez, M. Overmars, G. Toussaint, G. Wilfong and B. Zhu, "Feasibility of design in stereolithography," Algorithmica, Special Issue on Computational Geometry in Manufacturing, Vol. 19, No. 1/2, Sept/Oct, 1997, pp. 61–83.
  14. ^ Crivello, James V., and Elsa Reichmanis. "Photopolymer Materials and Processes for Advanced Technologies." Chemistry of Materials Chem. Mater. 26.1 (2014): 533. Print.
  15. ^ a b Lipson, Hod, Francis C. Moon, Jimmy Hai, and Carlo Paventi. "3-D Printing the History of Mechanisms." Journal of Mechanical Design J. Mech. Des. (2004): 1029-033. Print.
  16. ^ Fouassier, J. P. "Photopolymerization Reactions." The Wiley Database of Polymer Properties 3 (2003): 25. Print.
  17. ^ a b Ngo, Dong. "Formlabs Form 2 3D Printer review: An excellent 3D printer for a hefty price". CNET. Retrieved 3 August 2016. More specifically, as the print platform lowers itself into the resin glass tank, an ultraviolet laser light, from underneath the see-through tank, shines on it. (For this reason, SLA is sometimes called the laser 3D-printing technology.) Exposed to the laser light, the resin cures, solidifies and sticks to the platform. As more resin is exposed to the laser light, the pattern is created and joins the layer above. As more and more layers are being created, the build platform slowly -- very slowly -- moves upward, finally pulling the entire object out of the tank as the print process is finished.
  18. ^ rsilvers (2019-03-02). "On the difference between DLP and LCD based SLA printers | Matter Replicator". Matter Replicator. Archived from the original on 2023-11-13. Retrieved 2019-03-17.
  19. ^ Ali, Farhad (2024-01-19). "Difference Between DLP and LCD-Based SLA Printers". Lets3dPrint. Retrieved 2024-09-02.
  20. ^ "The Ultimate Guide to Stereolithography (SLA) 3D Printing (Updated for 2020)". Formlabs. Retrieved 2020-10-21.
  21. ^ Wu, B.; Sufi, A.; Biswas, R.G.; Hisatsune, A.; Moxley-Paquette, V.; Ning, P.; Soong, R.; Dicks, A.P. & Simpson, A.J. (2019). "Direct Conversion of McDonald's Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin". ACS Sustainable Chemistry & Engineering. Vol. 8. pp. 1171–1177. doi:10.1021/acssuschemeng.9b06281. S2CID 214174209.
  22. ^ Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C.K.; Dunn, M.L.; Wang, T. & Qi, H.J. (2017). "Recyclable 3D printing of vitrimer epoxy". Materials Horizons. Vol. 4. pp. 598–607. doi:10.1039/C7MH00043J.
  23. ^ "SLA 3D printing materials compared". 3D Hubs. Retrieved 2020-10-21.
  24. ^ Klimek, L; Klein HM; Schneider W; Mosges R; Schmelzer B; Voy ED (1993). "Stereolithographic modelling for reconstructive head surgery". Acta Oto-Rhino-Laryngologica Belgica. 47 (3): 329–34. PMID 8213143.
  25. ^ Bouyssie, JF; Bouyssie S; Sharrock P; Duran D (1997). "Stereolithographic models derived from x-ray computed tomography. Reproduction accuracy". Surgical and Radiologic Anatomy. 19 (3): 193–9. PMID 9381322.
  26. ^ Winder, RJ; Bibb, R (2009). "A Review of the Issues Surrounding Three-Dimensional Computed Tomography for Medical Modelling using Rapid Prototyping Techniques". Radiography. 16: 78–83. doi:10.1016/j.radi.2009.10.005. S2CID 72633062.
  27. ^ Bibb, Richard (2006). Medical Modelling: the application of advanced design and development technologies in medicine. Cambridge: Woodhead Publishing Ltd. ISBN 978-1-84569-138-7.
  28. ^ Winder, RJ; Bibb, R (2005). "Medical Rapid Prototyping Technologies: State of the Art and Current Limitations for Application in Oral and Maxillofacial Surgery". Journal of Oral and Maxillofacial Surgery. 63 (7): 1006–15. doi:10.1016/j.joms.2005.03.016. PMID 16003630.
  29. ^ a b "Applications of SLA". Stereolithography. Retrieved 7 October 2016.
  30. ^ D'Urso, Paul; Effeney, David; Earwaker, W. John; Barker, Timothy; Redmond, Michael; Thompson, Robert; Tomlinson, Francis (April 2000). "Custom cranioplasty using stereolithography and acrylic". British Journal of Plastic Surgery. 53 (3): 200–204. doi:10.1054/bjps.1999.3268. PMID 10738323.
  31. ^ Klein, H. M.; Schneider, W.; Alzen, G.; Voy, E.D.; Günther, R. W. (October 1992). "Pediatric craniofacial surgery: Comparison of milling and stereolithography for 3D model manufacturing". Pediatric Radiology. 22 (6): 458–460. doi:10.1007/BF02013512. PMID 1437375. S2CID 12820200.
  32. ^ Grigoryan, Bagrat; Paulsen, Samantha J.; Corbett, Daniel C.; Sazer, Daniel W.; Fortin, Chelsea L.; Zaita, Alexander J.; Greenfield, Paul T.; Calafat, Nicholas J.; Gounley, John P.; Ta, Anderson H.; Johansson, Fredrik; Randles, Amanda; Rosenkrantz, Jessica E.; Louis-Rosenberg, Jesse D.; Galie, Peter A.; Stevens, Kelly R.; Miller, Jordan S. (3 May 2019). "AAAS". Science. 364 (6439): 458–464. doi:10.1126/science.aav9750. PMC 7769170. PMID 31048486.
  33. ^ Palermo, Elizabeth (16 July 2013). "What is Stereolithography?". Live Science. Purch Group. Retrieved 7 October 2016.
  34. ^ a b "Sterolithography". Proto3000. Proto3000 Inc. Retrieved 22 June 2018.
  35. ^ "3D Print technologies". Luma 3D Print. LUMA-iD Ltd. Retrieved 22 June 2018.
  36. ^ Prindle, Drew (6 June 2017). "With lasers and hot nylon, Formlabs just took 3D printing to a whole new level". Digital Trends. Designtechnica Corporation. Retrieved 24 September 2018.
  37. ^ Doan, Minh (2024-02-14). "The best solution for resin 3d printing safety". Alveo3D. Retrieved 2024-02-15.

Sources

  • Kalpakjian, Serope, and Steven R. Schmid (2006). Manufacturing Engineering and Technology, 5th edition. Ch. 20. Upper Saddle River, NJ: Pearson Prentice Hall. pp. 586–587.

Read other articles:

Christine Lambrecht Menteri Pertahanan FederalMasa jabatan8 Desember 2021 – 19 Januari 2023KanselirOlaf Scholz PendahuluAnnegret Kramp-KarrenbauerPenggantiBoris PistoriusMenteri Kehakiman dan Perlindungan KonsumenMasa jabatan27 Juni 2019 – 8 Desember 2021KanselirAngela Merkel PendahuluKatarina BarleyPenggantiMarco BuschmannSekretaris Parlementer Negara untuk KeuanganMasa jabatan14 Maret 2018 – 27 Juni 2019Menjabat bersama Bettina HagedornKanselirAngela Me…

Murad IIمراد ثانىLukisan Murat II karya Konstantin KapıdağlıSultan Utsmaniyah Ke-6 periode pertamaBerkuasa26 Mei 1421 – Agustus 1444PendahuluMehmed IPenerusMehmed IIperiode keduaBerkuasaSeptember 1446 – 3 Februari 1451PendahuluMehmed IIPenerusMehmed IIInformasi pribadiKelahiranJuni 1404Amasya, Kesultanan UtsmaniyahKematian3 Februari 1451Edirne, Kesultanan UtsmaniyahPemakamanKomplek Muradiye, BursaWangsaUtsmaniyahAyahMehmed IIbuEmine HatunPasanganYeni HatunHatice Halime HatunHüma …

Aku yang SalahSingel oleh Mahalini Raharja dan Raja GiannucaDirilis7 Agustus 2020 (2020-08-07)Direkam2020 (2020)StudioBro's (Jakarta Selatan)GenrePopDurasi4:10LabelHitsPenciptaPika IskandarProduserKeke KanantaKronologi singel Mahalini Raharja Bawa Dia Kembali (2015) Aku yang Salah (2020) Melawan Restu (2021) Kronologi singel Raja Giannuca Untuk Ayah(2017) Aku yang Salah(2020) Kagum(2021) Video musikAku yang Salah di YouTube Aku yang Salah adalah lagu kolaborasi dari penyanyi …

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber:&#…

2012 2022 Élections législatives de 2017 en Indre-et-Loire 5 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Type d’élection Élections législatives Campagne 22 mai au 10 juin12 juin au 16 juin Débat(s) 1re circonscription : mercredi 14 juin sur TV Tours Val de Loire, en partenariat avec La Nouvelle République du Centre-Ouest et France Bleu Touraine[1]3e circonscription : jeudi 15 juin sur TV Tours Val de Loire, en partenariat avec La Nouvelle République…

PausHonorius IVAwal masa kepausan2 April 1285Akhir masa kepausan3 April 1287PendahuluMartinus IVPenerusNikolaus IVInformasi pribadiNama lahirGiacomo SavelliLahir1210Roma, ItaliaWafat3 April 1287Roma, Italia Honorius IV, nama lahir Giacomo Savelli (Roma, Italia, 1210 – Roma, Italia, 3 April 1287), adalah Paus Gereja Katolik Roma sejak 2 April 1285 sampai 3 April 1287. lbs Paus Gereja Katolik Daftar paus grafik masa jabatan orang kudus Nama Paus Abdikasi Paus Paus emeritus Antipaus Paus terpilih…

1970 studio album by MinaMina canta o BrasilStudio album by MinaReleased1970 (1970)Recorded1970StudioLa Basilica, Milan[1]GenrePopTropicáliabossa novaLength35:07LanguagePortugueseLabelPDUProducerBob MitchellMina chronology ...bugiardo più che mai... più incosciente che mai...(1969) Mina canta o Brasil(1970) ...quando tu mi spiavi in cima a un batticuore...(1970) Mina canta o Brasil is a studio album by Italian singer Mina, released in 1970 by PDU. The album, inspired by B…

Technique used to measure similarity in DNA sequences This article is about the specific use in genomics. For the general phenomenon, see Nucleic acid thermodynamics § Hybridization. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs attention from an expert in Molecular and Cell Biology. The specific problem is: article is inexpert in historical and conceptual scope, a…

2000 Japanese anime film directed by Kunihiko Yuyama Pokémon 3: The MovieTheatrical release posterJapanese nameKanji劇場版ポケットモンスター 結晶塔の帝王 ENTEILiteral meaningPocket Monsters the Movie: Lord of the UNKNOWN Tower ENTEITranscriptionsRevised HepburnGekijōban Poketto Monsutā Kesshōtō no Teiō ENTEI Directed byKunihiko YuyamaScreenplay by Takeshi Shudo Hideki Sonoda[1] Based onPokémonby Satoshi TajiriProduced by Choji Yoshikawa Yukako Matsusako Takemoto …

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

19th-century British Royal Navy bomb vessel For other ships with the same name, see HMS Fury. Lithograph depicting HMS Hecla (1815)and HMS Fury, by Arthur Parsey, 1823 History United Kingdom NameHMS Fury Ordered5 June 1813 BuilderMrs Mary Ross, Rochester, Kent Laid downSeptember 1813 Launched4 April 1814 ReclassifiedConverted to Arctic discovery vessel, 1821 FateBilged in Prince Regent Inlet, Baffin Island and abandoned, 25 August 1825 General characteristics Class and typeHecla-class …

2002 single by Brandy Full MoonSingle by Brandyfrom the album Full Moon ReleasedApril 1, 2002 (2002-04-01)Recorded2001StudioRecord Plant (Los Angeles)Length 3:31 (radio edit) 3:58 (album version) LabelAtlanticSongwriter(s)Michael FlowersProducer(s)Mike CityBrandy singles chronology What About Us? (2002) Full Moon (2002) He Is (2002) Full Moon is a song recorded by American singer Brandy for her third studio album of the same title (2002). A breakaway from Rodney Jerkins' dominatin…

Questa voce sull'argomento calciatori camerunesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Pierre Ebede Nazionalità  Camerun Altezza 188 cm Calcio Ruolo Portiere Squadra  Haguenau Carriera Squadre di club1 1997-1998 Tonnerre Yaoundé? (-?)1998-2002 Apollōn Kalamarias64 (-?)2002-2005 Chalkidona67 (-?)2005-2007 Panathīnaïkos22 (-?)2007-2008 Metz 23 (-?)2007-2008&#…

Questa voce sull'argomento calciatori congolesi (Rep. Dem. del Congo) è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Missilou Mangituka Nazionalità  RD del Congo Calcio Ruolo Attaccante Termine carriera 2000 Carriera Squadre di club1 2000 Zimbabwe Saints? (?) Nazionale 2000 RD del Congo3 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → …

Protein-coding gene in the species Homo sapiens GTF2F1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes1F3U, 1I27, 1J2X, 1NHA, 1ONV, 2K7L, 5IY9, 5IYA, 5IYC, 5IYB, 5IY7, 5IY8, 5IYD, 5IY6IdentifiersAliasesGTF2F1, general transcription factor IIF, polypeptide 1, 74kDa, BTF4, RAP74, TF2F1, TFIIF, general transcription factor IIF subunit 1External IDsOMIM: 189968 MGI: 1923848 HomoloGene: 1585 GeneCards: GTF2F1 Gene location (Human)Chr.Chromosome 19 (human)[1]Band19p13.3St…

Washington-Lee High SchoolInformasiDidirikan1925Jenishigh schoolKepala SekolahGregg RobertsonAlamatKampusSuburbanMoto[1] Washington-Lee High School (W-L) adalah salah satu dari tiga sekolah umum di distrik Arlington Public Schools, Arlington, Virginia, mencakup kelas dari 9–12, selain Yorktown High School, juga di Arlington utara, dan Wakefield High School Arlington Selatan. Secara konsisten sekolah ini memiliki posisi tinggi di peringkat nasional untuk persiapan kuliah, dengan ke…

English astronomer studying sunspots (1851–1928) Edward Walter MaunderBorn(1851-04-12)12 April 1851London, EnglandDied21 March 1928(1928-03-21) (aged 76)Known forMaunder MinimumSpouse(s)Edith Hannah Bustin (1875–1888) Annie Scott Dill Russell (1895–1928)Scientific careerFieldsastronomy Edward Walter Maunder (12 April 1851 – 21 March 1928) was an English astronomer. His study of sunspots and the solar magnetic cycle led to his identification of the period from 1645 to 1715 that …

Ada LovelaceLahirThe Hon. Augusta Ada Byron (1815-12-10)10 Desember 1815London, InggrisMeninggal27 November 1852(1852-11-27) (umur 36)Marylebone, London, InggrisMakamGereja St. Mary Magdalene, Hucknall, NottinghamKebangsaanBritishGelarCountess LovelaceSuami/istriWilliam King-Noel, Earl pertama dari LovelaceAnak Byron King-Noel, Viscount Ockham dan Baron Wentworth ke-12 Anne Blunt, Baroness Wentworth ke-15 Ralph King-Milbanke, Earl ke-2 dari Lovelace Augusta Ada King, Countess Lovelace (10 D…

County in Wisconsin, United States County in WisconsinBayfield CountyCountyBayfield County CourthouseLocation within the U.S. state of WisconsinWisconsin's location within the U.S.Coordinates: 46°38′N 91°11′W / 46.63°N 91.18°W / 46.63; -91.18Country United StatesState WisconsinFounded1845Named forHenry BayfieldSeatWashburnLargest cityWashburnArea • Total2,042 sq mi (5,290 km2) • Land1,478 sq mi (3,830 …

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2015). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Commen…

Kembali kehalaman sebelumnya