Gives information about the Galois module structure of class groups of cyclotomic fields
In mathematics , Stickelberger's theorem is a result of algebraic number theory , which gives some information about the Galois module structure of class groups of cyclotomic fields . A special case was first proven by Ernst Kummer (1847 ) while the general result is due to Ludwig Stickelberger (1890 ).[ 1]
The Stickelberger element and the Stickelberger ideal
Let Km denote the m th cyclotomic field , i.e. the extension of the rational numbers obtained by adjoining the m th roots of unity to
Q
{\displaystyle \mathbb {Q} }
(where m ≥ 2 is an integer). It is a Galois extension of
Q
{\displaystyle \mathbb {Q} }
with Galois group Gm isomorphic to the multiplicative group of integers modulo m (
Z
{\displaystyle \mathbb {Z} }
/m
Z
{\displaystyle \mathbb {Z} }
)× . The Stickelberger element (of level m or of Km ) is an element in the group ring
Q
{\displaystyle \mathbb {Q} }
[Gm ] and the Stickelberger ideal (of level m or of Km ) is an ideal in the group ring
Z
{\displaystyle \mathbb {Z} }
[Gm ] . They are defined as follows. Let ζm denote a primitive m th root of unity . The isomorphism from (
Z
{\displaystyle \mathbb {Z} }
/m
Z
{\displaystyle \mathbb {Z} }
)× to Gm is given by sending a to σa defined by the relation
σ σ -->
a
(
ζ ζ -->
m
)
=
ζ ζ -->
m
a
{\displaystyle \sigma _{a}(\zeta _{m})=\zeta _{m}^{a}}
.
The Stickelberger element of level m is defined as
θ θ -->
(
K
m
)
=
1
m
∑ ∑ -->
a
=
1
m
(
a
,
m
)
=
1
a
⋅ ⋅ -->
σ σ -->
a
− − -->
1
∈ ∈ -->
Q
[
G
m
]
.
{\displaystyle \theta (K_{m})={\frac {1}{m}}{\underset {(a,m)=1}{\sum _{a=1}^{m}}}a\cdot \sigma _{a}^{-1}\in \mathbb {Q} [G_{m}].}
The Stickelberger ideal of level m , denoted I (Km ) , is the set of integral multiples of θ (Km ) which have integral coefficients, i.e.
I
(
K
m
)
=
θ θ -->
(
K
m
)
Z
[
G
m
]
∩ ∩ -->
Z
[
G
m
]
.
{\displaystyle I(K_{m})=\theta (K_{m})\mathbb {Z} [G_{m}]\cap \mathbb {Z} [G_{m}].}
More generally, if F be any Abelian number field whose Galois group over
Q
{\displaystyle \mathbb {Q} }
is denoted GF , then the Stickelberger element of F and the Stickelberger ideal of F can be defined. By the Kronecker–Weber theorem there is an integer m such that F is contained in Km . Fix the least such m (this is the (finite part of the) conductor of F over
Q
{\displaystyle \mathbb {Q} }
). There is a natural group homomorphism Gm → GF given by restriction, i.e. if σ ∈ Gm , its image in GF is its restriction to F denoted resm σ . The Stickelberger element of F is then defined as
θ θ -->
(
F
)
=
1
m
∑ ∑ -->
a
=
1
m
(
a
,
m
)
=
1
a
⋅ ⋅ -->
r
e
s
m
σ σ -->
a
− − -->
1
∈ ∈ -->
Q
[
G
F
]
.
{\displaystyle \theta (F)={\frac {1}{m}}{\underset {(a,m)=1}{\sum _{a=1}^{m}}}a\cdot \mathrm {res} _{m}\sigma _{a}^{-1}\in \mathbb {Q} [G_{F}].}
The Stickelberger ideal of F , denoted I (F ) , is defined as in the case of Km , i.e.
I
(
F
)
=
θ θ -->
(
F
)
Z
[
G
F
]
∩ ∩ -->
Z
[
G
F
]
.
{\displaystyle I(F)=\theta (F)\mathbb {Z} [G_{F}]\cap \mathbb {Z} [G_{F}].}
In the special case where F = Km , the Stickelberger ideal I (Km ) is generated by (a − σa )θ (Km ) as a varies over
Z
{\displaystyle \mathbb {Z} }
/m
Z
{\displaystyle \mathbb {Z} }
. This not true for general F .[ 2]
Examples
If F is a totally real field of conductor m , then[ 3]
θ θ -->
(
F
)
=
φ φ -->
(
m
)
2
[
F
:
Q
]
∑ ∑ -->
σ σ -->
∈ ∈ -->
G
F
σ σ -->
,
{\displaystyle \theta (F)={\frac {\varphi (m)}{2[F:\mathbb {Q} ]}}\sum _{\sigma \in G_{F}}\sigma ,}
where φ is the Euler totient function and [F :
Q
{\displaystyle \mathbb {Q} }
] is the degree of F over
Q
{\displaystyle \mathbb {Q} }
.
Statement of the theorem
Stickelberger's Theorem [ 4]
Let F be an abelian number field. Then, the Stickelberger ideal of F annihilates the class group of F .
Note that θ (F ) itself need not be an annihilator, but any multiple of it in
Z
{\displaystyle \mathbb {Z} }
[GF ] is.
Explicitly, the theorem is saying that if α ∈
Z
{\displaystyle \mathbb {Z} }
[GF ] is such that
α α -->
θ θ -->
(
F
)
=
∑ ∑ -->
σ σ -->
∈ ∈ -->
G
F
a
σ σ -->
σ σ -->
∈ ∈ -->
Z
[
G
F
]
{\displaystyle \alpha \theta (F)=\sum _{\sigma \in G_{F}}a_{\sigma }\sigma \in \mathbb {Z} [G_{F}]}
and if J is any fractional ideal of F , then
∏ ∏ -->
σ σ -->
∈ ∈ -->
G
F
σ σ -->
(
J
a
σ σ -->
)
{\displaystyle \prod _{\sigma \in G_{F}}\sigma \left(J^{a_{\sigma }}\right)}
is a principal ideal .
See also
Notes
References
Cohen, Henri (2007). Number Theory – Volume I: Tools and Diophantine Equations . Graduate Texts in Mathematics . Vol. 239. Springer-Verlag . pp. 150– 170. ISBN 978-0-387-49922-2 . Zbl 1119.11001 .
Boas Erez, Darstellungen von Gruppen in der Algebraischen Zahlentheorie: eine Einführung
Fröhlich, A. (1977). "Stickelberger without Gauss sums". In Fröhlich, A. (ed.). Algebraic Number Fields, Proc. Symp. London Math. Soc., Univ. Durham 1975 . Academic Press. pp. 589– 607. ISBN 0-12-268960-7 . Zbl 0376.12002 .
Ireland, Kenneth; Rosen, Michael (1990). A Classical Introduction to Modern Number Theory . Graduate Texts in Mathematics. Vol. 84 (2nd ed.). New York: Springer-Verlag. doi :10.1007/978-1-4757-2103-4 . ISBN 978-1-4419-3094-1 . MR 1070716 .
Kummer, Ernst (1847), "Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren" , Journal für die Reine und Angewandte Mathematik , 1847 (35): 327– 367, doi :10.1515/crll.1847.35.327 , S2CID 123230326
Stickelberger, Ludwig (1890), "Ueber eine Verallgemeinerung der Kreistheilung" , Mathematische Annalen , 37 (3): 321– 367, doi :10.1007/bf01721360 , JFM 22.0100.01 , MR 1510649 , S2CID 121239748
Washington, Lawrence (1997), Introduction to Cyclotomic Fields , Graduate Texts in Mathematics, vol. 83 (2 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-94762-4 , MR 1421575
External links