This shape has been used as a test case for hexahedral mesh generation,[1][2][3][4][5] simplifying an earlier test case posited by mathematician Robert Schneiders in the form of a square pyramid with its boundary subdivided into 16 quadrilaterals. In this context the tetragonal trapezohedron has also been called the cubical octahedron,[3]quadrilateral octahedron,[4] or octagonal spindle,[5] because it has eight quadrilateral faces and is uniquely defined as a combinatorial polyhedron by that property.[3] Adding four cuboids to a mesh for the cubical octahedron would also give a mesh for Schneiders' pyramid.[2] As a simply-connected polyhedron with an even number of quadrilateral faces, the cubical octahedron can be decomposed into topological cuboids with curved faces that meet face-to-face without subdividing the boundary quadrilaterals,[1][5][6] and an explicit mesh of this type has been constructed.[4] However, it is unclear whether a decomposition of this type can be obtained in which all the cuboids are convex polyhedra with flat faces.[1][5]
In art
A tetragonal trapezohedron appears in the upper left as one of the polyhedral "stars" in M. C. Escher's 1948 wood engraving Stars.
Spherical tiling
The tetragonal trapezohedron also exists as a spherical tiling, with 2 vertices on the poles, and alternating vertices equally spaced above and below the equator.
^ abMitchell, S. A. (1999), "The all-hex geode-template for conforming a diced tetrahedral mesh to any diced hexahedral mesh", Engineering with Computers, 15 (3): 228–235, doi:10.1007/s003660050018, S2CID3236051.
^ abcCarbonera, Carlos D.; Shepherd, Jason F.; Shepherd, Jason F. (2006), "A constructive approach to constrained hexahedral mesh generation", Proceedings of the 15th International Meshing Roundtable, Berlin: Springer, pp. 435–452, doi:10.1007/978-3-540-34958-7_25, ISBN978-3-540-34957-0.