Share to: share facebook share twitter share wa share telegram print page

Thom space

In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space.

Construction of the Thom space

One way to construct this space is as follows. Let

be a rank n real vector bundle over the paracompact space B. Then for each point b in B, the fiber is an n-dimensional real vector space. We can form an n-sphere bundle by taking the one-point compactification of each fiber and gluing them together to get the total space.[further explanation needed] Finally, from the total space we obtain the Thom space as the quotient of by B; that is, by identifying all the new points to a single point , which we take as the basepoint of . If B is compact, then is the one-point compactification of E.

For example, if E is the trivial bundle , then is and, writing for B with a disjoint basepoint, is the smash product of and ; that is, the n-th reduced suspension of .

Alternatively,[citation needed] since B is paracompact, E can be given a Euclidean metric and then can be defined as the quotient of the unit disk bundle of E by the unit -sphere bundle of E.

The Thom isomorphism

The significance of this construction begins with the following result, which belongs to the subject of cohomology of fiber bundles. (We have stated the result in terms of coefficients to avoid complications arising from orientability; see also Orientation of a vector bundle#Thom space.)

Let be a real vector bundle of rank n. Then there is an isomorphism called a Thom isomorphism

for all k greater than or equal to 0, where the right hand side is reduced cohomology.

This theorem was formulated and proved by René Thom in his famous 1952 thesis.

We can interpret the theorem as a global generalization of the suspension isomorphism on local trivializations, because the Thom space of a trivial bundle on B of rank k is isomorphic to the kth suspension of , B with a disjoint point added (cf. #Construction of the Thom space.) This can be more easily seen in the formulation of the theorem that does not make reference to Thom space:

Thom isomorphism —  Let be a ring and be an oriented real vector bundle of rank n. Then there exists a class

where B is embedded into E as a zero section, such that for any fiber F the restriction of u

is the class induced by the orientation of F. Moreover,

is an isomorphism.

In concise terms, the last part of the theorem says that u freely generates as a right -module. The class u is usually called the Thom class of E. Since the pullback is a ring isomorphism, is given by the equation:

In particular, the Thom isomorphism sends the identity element of to u. Note: for this formula to make sense, u is treated as an element of (we drop the ring )

[1]

The standard reference for the Thom isomorphism is the book by Bott and Tu.

Significance of Thom's work

In his 1952 paper, Thom showed that the Thom class, the Stiefel–Whitney classes, and the Steenrod operations were all related. He used these ideas to prove in the 1954 paper Quelques propriétés globales des variétés differentiables that the cobordism groups could be computed as the homotopy groups of certain Thom spaces MG(n). The proof depends on and is intimately related to the transversality properties of smooth manifolds—see Thom transversality theorem. By reversing this construction, John Milnor and Sergei Novikov (among many others) were able to answer questions about the existence and uniqueness of high-dimensional manifolds: this is now known as surgery theory. In addition, the spaces MG(n) fit together to form spectra MG now known as Thom spectra, and the cobordism groups are in fact stable. Thom's construction thus also unifies differential topology and stable homotopy theory, and is in particular integral to our knowledge of the stable homotopy groups of spheres.

If the Steenrod operations are available, we can use them and the isomorphism of the theorem to construct the Stiefel–Whitney classes. Recall that the Steenrod operations (mod 2) are natural transformations

defined for all nonnegative integers m. If , then coincides with the cup square. We can define the ith Stiefel–Whitney class of the vector bundle by:

Consequences for differentiable manifolds

If we take the bundle in the above to be the tangent bundle of a smooth manifold, the conclusion of the above is called the Wu formula, and has the following strong consequence: since the Steenrod operations are invariant under homotopy equivalence, we conclude that the Stiefel–Whitney classes of a manifold are as well. This is an extraordinary result that does not generalize to other characteristic classes. There exists a similar famous and difficult result establishing topological invariance for rational Pontryagin classes, due to Sergei Novikov.

Thom spectrum

Real cobordism

There are two ways to think about bordism: one as considering two -manifolds are cobordant if there is an -manifold with boundary such that

Another technique to encode this kind of information is to take an embedding and considering the normal bundle

The embedded manifold together with the isomorphism class of the normal bundle actually encodes the same information as the cobordism class . This can be shown[2] by using a cobordism and finding an embedding to some which gives a homotopy class of maps to the Thom space defined below. Showing the isomorphism of

requires a little more work.[3]

Definition of Thom spectrum

By definition, the Thom spectrum[4] is a sequence of Thom spaces

where we wrote for the universal vector bundle of rank n. The sequence forms a spectrum.[5] A theorem of Thom says that is the unoriented cobordism ring;[6] the proof of this theorem relies crucially on Thom’s transversality theorem.[7] The lack of transversality prevents from computing cobordism rings of, say, topological manifolds from Thom spectra.

See also

Notes

  1. ^ Proof of the isomorphism. We can embed B into either as the zero section; i.e., a section at zero vector or as the infinity section; i.e., a section at infinity vector (topologically the difference is immaterial.) Using two ways of embedding we have the triple:
    .
    Clearly, deformation-retracts to B. Taking the long exact sequence of this triple, we then see:
    the latter of which is isomorphic to:
    by excision.
  2. ^ "Thom's theorem" (PDF). Archived (PDF) from the original on 17 Jan 2021.
  3. ^ "Transversality" (PDF). Archived (PDF) from the original on 17 Jan 2021.
  4. ^ See pp. 8-9 in Greenlees, J. P. C. (2006-09-15). "Spectra for commutative algebraists". arXiv:math/0609452.
  5. ^ Francis, J. "Math 465, lecture 2: cobordism" (PDF). Notes by O. Gwilliam. Northwestern University.
  6. ^ Stong 1968, p. 18
  7. ^ Francis, J. "Math 465, lecture 4: transversality" (PDF). Notes by I. Bobovka. Northwestern University.

References

Read other articles:

Profesor Vladimir Tagantsev, yang disiksa dan ditipu untuk memberikan nama-nama ratusan orang tidak bersalah kepada Cheka Konspirasi Tagantsev (atau kasus Organisasi Militer Petrograd) adalah sebuah konspirasi monarkis palsu yang dikuak oleh kepolisian rahasia Uni Soviet pada 1921 untuk meneror para intelektual yang dianggap sebagai lawan potensial terhadap rezim pemerintahan Bolshevik.[1] Akibatnya, lebih dari 800 orang, kebanyakan dari komunitas saintifik dan artistik di Petrograd (kin…

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (July 2021) Quartile representation of current account balance as percent GDP by IMF WEO data Quartile representation of current account balance as percent GDP by CIA World factbook data This article includes a list of countries of the world sorted by current account balance as a percentage of gross domestic product (nominal GDP). The first list includes 2017 data for member…

Menurut legenda, Raja Abgar menerima Gambar dari Edessa, yang memuat gambar wajah Yesus. Gambar dari Edessa (Inggris: Image of Edessacode: en is deprecated ) menurut tradisi Kristen adalah relikwi kudus yang berupa kain berbentuk bujursangkar atau persegi panjang yang secara ajaib memuat cetakan wajah Yesus. Merupakan ikon (gambar) pertama. Dalam gereja Ortodoks Timur dan juga dalam bahasa Inggris, gambar ini dikenal sebagai Mandylion. Menurut legenda, ketika Konon Yesus Kristus masih hidup, seo…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Labradorit – berita · surat kabar · buku · cendekiawan · JSTOR Labradorit[pranala nonaktif permanen] dari dekat. Labradorit merupakan salahsatu jenis mineral felspar. Hal ini berarti Labradorit meru…

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) هاردينبورغ     الإحداثيات 42°02′45″N 74°36′47″W / 42.045833333333°N 74.613055555556°W࿯…

Royal Secret AgentPoster promosiNama alternatifBlade of the Phantom Master New Secret Royal Agent New AmbassadorHangul암행어사: 조선비밀수사단 Hanja暗行御史: 朝鮮秘密搜查團 GenreSejarahKomediDetektifPembuatKBS Drama HeadquartersDitulis olehKang Min-sunPark Sung-hoonSutradaraKim Jung-minPemeranKim Myung-sooKwon NaraLee Yi-kyungLee Tae-hwanJo Soo-minPenata musikLee Ji-yongNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiProduser eksekutifYoon Jae-hyukProdu…

Jayshree T.Jayshree T. pada Maret 2013LahirJayshree T.1953PekerjaanPemeranTahun aktif1968-sekarangSuami/istriJai Prakash Jayshree Talpade (kelahiran c. 1953) adalah seorang pemeran dan penari Marathi, yang berkarya dalam film Bollywood dan beberapa film Gujarat dan Marathi. Karier Talpade memulai kariernya pada usia 5 tahun pada 1958 dengan Goonj Uthi Shehnai.[1] Ia mendapatkan popularitas setelah tampil dalam beberapa lagu tari, menjadi seorang eksponen Kathak. Namun ia telah menda…

Dear John Sampul novel asli Dear JohnPengarangNicholas SparksNegaraAmerika SerikatBahasaInggris (original)Indonesia (terjemahan)GenreFiksiRomantisismePenerbitWarner Books (AS)Grand Central Publishing (AS)Gramedia Pustaka Utama (Indonesia)Tanggal terbitOktober 2006Jenis mediaCetak (Hardcover, Paperback)Halaman276ISBNISBN [[Special:BookSources/0-446-52805-6 (original)ISBN 978-979-22-5847-9 (terjemahan)|0-446-52805-6 (original)ISBN 978-979-22-5847-9 (terjemahan)]] Invalid ISBN D…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find source…

For other uses, see Skyler White (disambiguation). Breaking Bad character This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Skyler White – news · newspapers · books ·…

Major League Baseball season Major League Baseball team season 1976 Boston Red SoxLeagueAmerican LeagueDivisionEastBallparkFenway ParkCityBoston, MassachusettsRecord83–79 (.512)Divisional place3rd (15+1⁄2 GB)OwnersTom Yawkey, Jean Yawkey[a]PresidentTom Yawkey, Jean YawkeyGeneral managerDick O'ConnellManagersDarrell Johnson (41–45)Don Zimmer (42–34)TelevisionWSBK-TV, Ch. 38(Dick Stockton, Ken Harrelson)RadioWMEX-AM 1510(Ned Martin, Jim Woods)StatsESPN.comBB-reference U…

R1-classR1 class at Sydney ShowgroundManufacturerClyde EngineeringCommonwealth EngineeringConstructed1935 and 1950-1953Number built155Fleet numbers1933-2087Capacity56 (Seated)SpecificationsTrain length14.35 metresWidth2.74 metresHeight3.26 metresMaximum speed60 km/hWeight17.9 tPower output4 x 40 hpElectric system(s)600 V DC catenaryCurrent collector(s)Trolley poleTrack gauge1,435 mm (4 ft 8+1⁄2 in) The R1-class trams were a class of trams operated on the Sydney tra…

Республика Косово — частично признанное государство на границах Центральной и Юго-Восточной Европы и Средиземноморья, которое 17 февраля 2008 года провозгласило независимость от Сербии. Косово — член МОК, Мирового банка, МВФ. По состоянию на 2015 год, Косово установил…

2019 European Athletics Indoor ChampionshipsTrack events60 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mmenwomen60 m hurdlesmenwomen4×400 m relaymenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenCombined eventsPentathlonwomenHeptathlonmenvte The men's long jump event at the 2019 European Athletics Indoor Championships was held on 1 March at 10:03 (qualification) and 3 March at 11:35 (final) local time. Medalists Gold Silver …

Cet article est une ébauche concernant l’automobile. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ne doit pas être confondu avec Ford Model AA. Chevrolet AA tourer (phaéton) en Australie. La Chevrolet Series AA Capitol (ou Chevrolet Capitol) est un véhicule américain fabriqué par Chevrolet en 1927. Lancée dans l'année où Ford est passé de la Model T a la Model A, Chevrolet a vendu 678 540 voitures Ser…

Richardoestesia TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSaurischiaGenusRichardoestesia Currie, 1990 Tata namaDinamakan berdasarkanRichard Estes (en) Spesies R. gilmorei Currie, Rigby & Sloan, 1990 R. isosceles Sankey, 2001 lbs Richardoestesia adalah sebuah genus dinosaurus teropoda berukuran menengah (sekarang 100 kilogram (220 pon)) dari Zaman Kapur Akhir di Amerika Utara. Genus tersebut terdiri dari dua spesies, R. gilmorei dan R. isosceles. Referensi Bacaan tambahan Ba…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

Diwan Deux gnaouas jouant du guembri dans les rues d'Oran.Données clés Origines culturelles Algérie Instruments typiques Guembri, karkabou Popularité Algérie, Sahara algérien Scènes régionales Biskra, Béchar modifier La musique diwane ou la musique gnaouie algérienne est un genre musical algérien pratiqué par des populations d'origines subsahariennes. La musique diwane est utilisée pendant une cérémonie religieuse des Gnaouas d'Algérie. Au fil des siècles, les musiques des commu…

Colli del Trontocomune LocalizzazioneStato Italia Regione Marche Provincia Ascoli Piceno AmministrazioneSindacoAndrea Cardilli (lista civica Liberamente Colli) dal 26-5-2014 (2º mandato dal 27-5-2019) TerritorioCoordinate42°52′40.98″N 13°44′53.52″E / 42.87805°N 13.7482°E42.87805; 13.7482 (Colli del Tronto)Coordinate: 42°52′40.98″N 13°44′53.52″E / 42.87805°N 13.7482°E42.87805; 13.7482 (Colli del Tronto…

François Quesnay (1694-1774), Ia adalah seorang ekonom Prancis dan merupakan pemimpin intelektual physiocrats, yaitu sekolah sistematis pertama ekonomi di Prancis Tableau economique, 1965 François Quesnay (lahir, 2 Juni 1694 di Near Paris, Prancis - meninggal, 16 Desember 1774 di Versailles) adalah seorang ekonom Prancis dan pemimpin intelektual physiocrats, sekolah sistematis pertama ekonomi politik di Prancis.[1] Quesnay menjabat sebagai dokter konsultan untuk Raja Louis XV di Versai…

Kembali kehalaman sebelumnya