Whitney immersion theoremIn differential topology, the Whitney immersion theorem (named after Hassler Whitney) states that for , any smooth -dimensional manifold (required also to be Hausdorff and second-countable) has a one-to-one immersion in Euclidean -space, and a (not necessarily one-to-one) immersion in -space. Similarly, every smooth -dimensional manifold can be immersed in the -dimensional sphere (this removes the constraint). The weak version, for , is due to transversality (general position, dimension counting): two m-dimensional manifolds in intersect generically in a 0-dimensional space. Further resultsWilliam S. Massey (Massey 1960) went on to prove that every n-dimensional manifold is cobordant to a manifold that immerses in where is the number of 1's that appear in the binary expansion of . In the same paper, Massey proved that for every n there is manifold (which happens to be a product of real projective spaces) that does not immerse in . The conjecture that every n-manifold immerses in became known as the immersion conjecture. This conjecture was eventually solved in the affirmative by Ralph Cohen (1985). See alsoReferences
External links
Information related to Whitney immersion theorem |