La formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du XIXe siècle par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ».
On se place dans l'anneau commutatifF des fonctions arithmétiques, défini comme suit. L'ensemble F des fonctions arithmétiques est naturellement muni d'une addition qui en fait un groupe abélien. On le munit d'une deuxième loi interne, la convolution de Dirichlet, en associant à deux éléments f et g de F la fonction f ✻ g définie par :
Cette loi sur F est associative, commutative et distributive par rapport à l'addition, et il existe un élément neutre : la fonction notée ici δ1 et définie par δ1(1) = 1 et pour tout entier n > 1, δ1(n) = 0.
Ces calculs restent valables pour f et g à valeurs dans un groupe abélien[3] (G, +) car le sous-anneau de F constitué des applications à valeurs entières contient μ et 1, et les applications de ℕ* dans G forment un module à droite sur cet anneau, la loi externe étant la convolution définie par les mêmes formules.
Soient a et b deux éléments de A tels que a ≤ b. Pour tout entier naturel p, on appelle « chaîne de longueur p joignant a à b », toute suite finie (x0, x1, ..., xp) telle que :
Pour A = ℕ*, ordonné par « a ≤ b lorsque a est un diviseur de b », on a
Formule d'inversion de Rota
La fonction μA vérifie la formule d'inversion suivante[8], qui généralise celle pour μ :
En effet, le produit de convolution de Dirichlet se généralise, permettant d'associer à tout ordre localement fini A son algèbre d'incidence(en), et μA s'interprète alors comme un inverse dans cet anneau unitaire. Ceci fournit in fine une preuve très courte — analogue à celle donnée plus haut pour μ — de la formule d'inversion ci-dessus, mais nécessite de développer au préalable cette théorie[4],[9], alors qu'un calcul direct est possible :
Démonstration directe
D'après la caractérisation de μA, les termes de droite sont tous nuls, sauf si c est égal à b ; a est alors aussi égal à b et μA(a, a) est égal à 1, ce qui montre le résultat.
En appliquant cette formule à d'autres ensembles partiellement ordonnés localement finis que celui des entiers strictement positifs ordonné par divisibilité, on obtient d'autres formules d'inversion de Möbius, comprenant entre autres le principe d'inclusion-exclusion de Moivre.
Lorsque l'ordre utilisé est l'ordre usuel sur les entiers naturels non nuls, on obtient la formule suivante, utile en combinatoire :
si F et G sont deux fonctions définies sur l'intervalle [1, +∞[ de ℝ à valeurs complexes et si α et β sont deux fonctions arithmétiques inverses l'une de l'autre pour la convolution de Dirichlet (en particulier si α = 1 et β = μ), alors[10]
La formule d'inversion de Möbius est valable pour toute fonction f de N* dans un groupe abélien. Si ce groupe est noté multiplicativement, la formule devient :
En prenant, comme groupe multiplicatif, celui des fractions rationnelles non nulles à coefficients rationnels et, comme fonction f, celle qui associe à tout entier n > 0 le nepolynôme cyclotomique Φn, on obtient, en vertu de l'égalité
un moyen de calculer le ne polynôme cyclotomique :
Ces deux équations précisent celles du paragraphe précédent, qui correspondent au degré des polynômes en jeu.
Certains codes correcteurs, comme les codes cycliques sont construits à l'aide de l'anneau des polynômes à coefficients dans le corps finiFq à q éléments et d'un polynôme irréductible et unitaire de degré n, où n est premier avec q[réf. nécessaire]. C'est l'une des raisons pour lesquelles on s'intéresse au nombre mn(q) de polynômes irréductibles unitaires de degré n à coefficients dans Fq. Cette question est un exemple de problème de dénombrement faisant intervenir la fonction de Möbius.
↑ a et bFrançoise Badiou, « Formule d'inversion de Möbius », Séminaire Delange-Pisot-Poitou Théorie des nombres, vol. 2, exp. 1, , p. 3 (lire en ligne).
↑G. H. Hardy et E. M. Wright (trad. de l'anglais par F. Sauvageot), Introduction à la théorie des nombres [« An Introduction to the Theory of Numbers »], Paris/Heidelberg, Vuibert-Springer, , 568 p. (ISBN978-2-7117-7168-4), p. 301, th. 266 et 267.