Inversion (géométrie)En géométrie, une inversion est une transformation qui inverse les distances par rapport à un point donné, appelé centre de l'inversion. Cela signifie en substance que l'image d'un point est d'autant plus éloignée du centre de l'inversion que le point d'origine en est proche. Selon une phrase célèbre, « Plaçons une cage sphérique dans le désert, entrons-y et fermons-la. Puis faisons une inversion par rapport à la cage. Le lion est alors à l'intérieur de la cage, et nous sommes à l'extérieur[1] ». Définition générale dans le cadre d’un espace affine euclidienSoient un espace affine euclidien, un point de et un réel non nul. Définition — L'inversion de pôle et de rapport est l'application de dans lui-même qui, à un point , associe l’unique point Soit la sphère de centre et de rayon . Définition — L'inversion par rapport à est l'inversion de pôle et de rapport . Propriétés
Le principal intérêt des inversions est la transformation d'hyperplans (droites) en hypersphères (cercles) et réciproquement, tout en préservant les angles : Théorème — Toute inversion de centre et de rapport non nul envoie :
L'ensemble constitué par les hypersphères et les hyperplans est donc stable par inversion. Ainsi si dans le plan , et sont les images respectives de , et par une inversion de centre de rapport non nul, alors , et sont alignés si et seulement si ,, et sont cocycliques, ce qui est la raison profonde de l'égalité et de l'inégalité de Ptolémée. Théorème — Les inversions de rapport non nul préservent les angles (orientés). Ainsi par exemple deux droites ne passant pas par sont perpendiculaires si et seulement si leurs cercles images le sont (deux cercles étant dits perpendiculaires si leurs tangentes aux points d'intersection le sont). DistancesSi et sont les images respectives de et par une inversion de centre de rapport (), alors on a la relation entre les distances Dans le planDans le plan affine euclidienDans le plan affine euclidien, l’inverse d’un point est constructible au compas lorsqu’on connait le cercle d'inversion, ce qui permet de démontrer le : Théorème de Mohr et Mascheroni — Toute construction à la règle et au compas peut se faire uniquement au compas (à l’exception des tracés des portions de droites). Signalons aussi l’existence de « machines à inversion », l’inverseur de Peaucellier, utilisé pour transformer un mouvement rectiligne en mouvement circulaire : L'inverseur est un objet mécanique avec deux barres OP et OQ de longueur fixe et 4 autres barres MP, MQ, M'P, M'Q de longueurs fixes avec les points de pivots aux sommets du losange OMPQM'.
Dans le plan complexeDans le plan complexe, une inversion particulière est celle par rapport au cercle unité ; en termes d’affixe complexe, elle est codée par l'application On voit ainsi que cette inversion est composée de la conjugaison complexe et d’une homographie. C’est en fait un résultat général : un cercle d’inversion étant donné, on choisit trois points sur ce cercle, puis l’unique homographie qui envoie respectivement sur . On vérifie alors que l’application , où dénote la conjugaison complexe, est précisément l’inversion cherchée, et son écriture comme composée d’une homographie et de la conjugaison complexe découle de l’écriture de et comme homographie. On fait ensuite le lien avec le groupe circulaire, qui est l’ensemble des transformations, définies en fait sur la droite projective complexe, et qui envoient les droites et les cercles sur des droites et des cercles ; en identifiant la droite projective complexe à la sphère de Riemann, cette propriété de conservation s’exprime plus simplement : ce sont les cercles tracés sur cette sphère qui sont conservés. Il est clair que les inversions appartiennent au groupe circulaire ; et relativement simple de montrer qu’il en est de même pour les homographies. On peut montrer ensuite qu’en fait, le groupe circulaire est engendré par inversions et homographies. Géométrie anallagmatiqueLa géométrie anallagmatique est l'étude (au sens du programme d'Erlangen) de la géométrie dont le groupe d'invariants est le groupe circulaire[réf. souhaitée] ; elle est aussi connue sous le nom de géométrie de Möbius, ou (dans l'espace) de géométrie conforme. Notes et références
Voir aussiArticles connexesLiens externes
Bibliographie
|