Une particule élémentaire est une particule ne possédant aucune structure interne mesurable, c’est-à-dire qu'elle n'est pas composée d'autres particules. Il s'agit des objets fondamentaux de la théorie quantique des champs.
Les particules élémentaires peuvent être classées selon leur spin :
les fermions, possédant un spin demi-entier, constituent la matière de l'univers;
les bosons, possédant un spin entier, donnent naissance aux forces agissant entre les particules de matière. Ils sont aussi appelés "particules support de force" ou "particules virtuelles"[1].
Modèle standard
Le modèle standard décrit l'état actuel des connaissances des particules élémentaires. Toutes les particules du modèle standard ont été observées de manière certaine. Le boson de Higgs fut découvert au Cern en 2012[2]. La découverte de cette particule responsable de la masse de l'univers représente une confirmation forte du modèle standard.
Fermions (spin demi-entier)
Les fermions possèdent un spin demi-entier ; pour tous les fermions élémentaires connus, il s’agit de ½. Chaque fermion possède sa propre antiparticule distincte. Les fermions sont les briques de base de la matière. Ils sont classés suivant qu’ils interagissent par l’intermédiaire de l’interaction forte ou pas. Selon le modèle standard, il existe douze saveurs de fermions élémentaires : six quarks et six leptons.
Les quarks interagissent par l’intermédiaire de l’interaction forte. Leurs antiparticules respectives sont les antiquarks. Il existe six saveurs de quarks :
Les leptons n’interagissent pas par l’intermédiaire de l’interaction forte. Leurs antiparticules respectives sont les antileptons (même si l’antiparticule de l’électron est appelée positron ou positon pour des raisons historiques). Il existe six saveurs de leptons :
Note : on sait que les masses des neutrinos ne sont pas nulles à cause de l’effet d’oscillation, mais elles sont suffisamment faibles pour ne pas avoir été mesurées directement en 2006.
Le boson de Higgs (de spin nul) est prédit par la théorie électrofaible. Le , le CERN a annoncé que des signaux pouvant correspondre au boson de Higgs, avaient été trouvés dans deux expériences indépendantes. Dans le mécanisme de Higgs du modèle standard, le boson de Higgs est créé par une brisure spontanée de symétrie du champ de Higgs. La masse intrinsèque des particules élémentaires (tout particulièrement celle des bosons W et Z) est expliquée par leur interaction avec ce champ.
Particules hypothétiques
Les théories supersymétriques prédisent l'existence de plus de particules, aucune n'ayant été confirmée expérimentalement en 2024 :
la supersymétrie associe à chaque fermion un boson, et réciproquement :
le neutralino (spin ½), qui est une superposition du photino (superpartenaire du photon), du zino (superpartenaire du boson Z) et du higgsino (superpartenaire du boson de Higgs). Il s'agit du principal candidat pour la matière noire ;
le monopôle magnétique est le nom général de particules possédant une charge magnétique non nulle ; elles sont prédites par certaines théories de grande unification ;
le tachyon est une particule hypothétique qui voyage plus rapidement que la vitesse de la lumière et possède une masse au repos imaginaire ;
Le préon serait une sous-structure théorique des quarks et des leptons, mais les accélérateurs de particules n'ont pas prouvé son existence.
Le modèle des quarks, proposé en 1964 par Murray Gell-Mann et George Zweig (de façon indépendante), décrit les hadrons comme composés de quarks et d'antiquarks de valence, liés par l'interaction forte, laquelle est transmise par des gluons. Une « mer » de paires quark-antiquark virtuelles est également présente dans chaque hadron.
Les mésons ordinaires contiennent un quark de valence et un antiquark de valence, et incluent le pion, le kaon, le méson J/Ψ. Dans les modèles d'hadrodynamique quantique, l'interaction forte entre nucléons est transmise par des mésons.
Des mésons exotiques pourraient exister. Leur signature a été détectée, mais leur existence est toujours incertaine :
La boule de glu est formée de gluons liés et ne possède aucun quark de valence.
Les hybrides sont formés de un ou plusieurs quarks ou antiquarks de valence et d'un ou plusieurs gluons.
Les hypérons tels les particules Λ, Σ, Ξ et Ω, qui contiennent un ou plusieurs quarks strange, ont une durée de vie courte et sont plus massifs que les nucléons.
Quelques baryons comportant des quarks charm et bottom ont été observés.
Noyaux atomiques
Le noyau atomique est formé de protons et de neutrons. Chaque type de noyau contient un nombre spécifique de ces deux particules et est appelé un isotope.
Les molécules sont les plus petites particules en lesquelles une substance non élémentaire peut être divisée tout en conservant ses propriétés physiques. Les molécules sont des composés de plusieurs atomes.
Matière condensée
Les équations de champ de la physique de la matière condensée sont remarquablement similaires à celles de la physique des particules. En conséquence, la plus grande part de la physique des particules s'applique à la matière condensée ; en particulier, certaines excitations de champs appelée quasi-particules peuvent être créées et étudiées :
Un tachyon est une particule hypothétique qui se déplacerait plus vite que la lumière et possèderait de ce fait une masse imaginaire. L'existence de tachyons poserait de nombreux problèmes conceptuels : par exemple, il existerait des tachyons d'énergie nulle, qui pourraient être émis en paires au sein du vide.