Lituus (courbe)En géométrie, un lituus est une courbe plane d'équation polaire : Le nom de «lituus» lui est donné par Roger Cotes dans son Harmonia mensurarum[1] publié en 1722 en référence à la crosse étrusque de même nom. Cette courbe avait déjà été étudiée par Pierre Varignon en 1704 dans le cadre de son étude générale des spirales d'équation polaire pour m entier positif ou négatif[2]. Propriétés géométriquesLe lituus est une courbe transcendante qui possède pour asymptotes son axe polaire et son pôle[3]. Il possède deux branches (pour ρ positif et pour ρ négatif) symétriques par rapport à O. Pour tout point M situé sur la courbe, on appelle m le point d'intersection du cercle de centre O passant par M avec l'axe polaire. L'aire du secteur angulaire mOM est constant égale à a2/2[4]. Pour tout point M de la courbe, on appelle T le point d'intersection de la tangente avec la droite passant par O et perpendiculaire à (OM) alors la longueur OT est égale à 2a²/OM. Le lituus est donc une courbe dans laquelle la sous-tangente est inversement proportionnelle au rayon. L'aire du triangle OTM est constante égale au double de l'aire du secteur angulaire mOM[4]. L'aire balayée par le rayon OM de Md à Mf est proportionnelle au logarithme du rapport des rayons[5],[4]: Le rayon de courbure, pour une courbe paramétrée θ, a pour valeur[3]: et pour une courbe paramétrée par ρ, s'exprime par[4]: La courbe possède donc un point d'inflexion pour un rayon égal à a√2 et un angle de 1/2 rad. Son abscisse curviligne est donnée par[3]: et la rectification de la courbe fait intervenir des intégrales elliptiques de deuxième espèce[4]. Relation avec d'autres courbesLe lituus est l'image par une inversion, de pôle O et de cercle de rayon a, de la spirale de Fermat[3] d'équation polaire ρ2 = a2θ. C'est également la radiale de la clothoïde[6]. Si on fait rouler le lituus sur l'hyperbole d'équation xy = –2a2, son centre se déplace sur l'axe des abscisses[7]. Cette propriété avait déjà été remarquée par Pierre Varignon en 1704[2]. Notes et références
Bibliographie
|