Share to: share facebook share twitter share wa share telegram print page

 

Module fidèle

Un module M sur un anneau A est dit fidèle si son annulateur est réduit à {0}, en d'autres termes, si l'action de chaque est non triviale ( pour un certain ). Autrement dit, un module est fidèle si la représentation associée est injective.

À chaque module, on peut associer un module fidèle en procédant de cette manière. Le morphisme d'anneaux se factorise en un morphisme injectif . Comme n'est autre que Ann(M), donne à M une structure de -module, et cette fois M est fidèle puisque est injective.

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya