Share to: share facebook share twitter share wa share telegram print page

Modèle de Maxwell convecté supérieur

Le modèle de Maxwell convecté supérieur est une généralisation du modèle de Maxwell tenant compte des non-linéarités cinématiques (mais ne tenant pas compte des non-linéarités mécaniques). Ce modèle a été proposé pour la première fois par James G. Oldroyd.

Ecriture du modèle

La motivation de l'écriture de ce modèle tient du fait que le modèle de Maxwell ne respecte pas la condition d'incompressibilité du fluide. L'introduction de cette nouvelle condition mène à la réécriture suivante :

Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \underline{\sigma} + \lambda \stackrel{\nabla}{\underline{\sigma}} = 2\eta_0 \mathbf {D} }

où :

  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \underline{\sigma}} est le tenseur des contraintes,
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \lambda} est le temps de relaxation;
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \stackrel{\nabla}{\underline{\sigma}} } est la dérivée convectée supérieure temporelle du tenseur des contraintes :
Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \stackrel{\nabla}{\underline{\sigma}} = \frac{\partial}{\partial t} \underline{\sigma} + \vec{v} \cdot \nabla \underline{\sigma} - (\nabla \vec{v})^T \cdot \underline{\sigma} - \underline{\sigma} \cdot (\nabla \vec{v}) }
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \vec{v}} est la vitesse du fluide
  • est la viscosité à cisaillement nul,
  • est le tenseur des taux de déformation.

Cas d'un cisaillement continu

Dans ce cas, seules deux composantes du tenseur des contraintes sont non nulles :

Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \sigma_{12}=\eta_0 \dot \gamma}

et

Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \dot \gamma} est le taux de cisaillement.

Ainsi, le modèle de Maxwell convecté supérieur prédit, dans le cadre d'un cisaillement continu, que les contraintes sont proportionnelles au taux de cisaillement.

Différences de contraintes normales

En ce qui concerne les différences de contraintes normales, la première

Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle N_1 = \sigma_{11}-\sigma_{22} = 2 E \tau^2 \dot\gamma^2}


est proportionnelle au taux de cisaillement au carré et que la seconde

Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle N_2 = \sigma_{22}-\sigma_{33}=0}

est toujours nulle.

Ce résultat peut se réécrire de la manière suivante :

Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \Psi_2 = 0}

en ayant posé .

En d'autres termes, ce modèle prédit l'apparition de la première différence de contraintes normales mais ne prédit pas le comportement non newtonien de la viscosité de cisaillement ou la seconde différence de contraintes normales.

Les résultats de ce modèle en ce qui concerne les contraintes normales sont en accord en première approximation avec ce qui peut être observé pour des mélanges de polymères à des taux de cisaillement modérés (Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikipedia.org/v1/ » :): {\displaystyle \Psi_2 \ll \Psi_1} expérimentalement). Cependant, la viscosité constante avec le taux de cisaillement n'est pas en accord avec les observations expérimentales : c'est la limite de ce modèle.

Viscosité élongationnelle

Références

Kembali kehalaman sebelumnya