Problème des partisLe problème des partis[1] est un problème mathématique portant sur les jeux de hasard. Il joue un rôle décisif dans l'histoire de la mathématisation du hasard et l'émergence d'une théorie mathématique du probable et du calcul des probabilités à partir des travaux de Blaise Pascal et de Christian Huygens au milieu du XVIIe siècle. Le problème est d'apparence très simple[2]. FormulationLe problème des partis a été exposé par Blaise Pascal en 1654 dans sa correspondance avec Pierre de Fermat. Le problème des partis, dans sa version la plus simple, est le suivant :
La solution de Pascal, dans le cas le plus simple, c'est-à-dire celui où le jeu est interrompu lorsqu'un joueur a gagné 2 parties et l'autre 1 (situation notée 2/1), consiste à considérer que si le jeu avait continué il y aurait eu 2 situations possibles, 2/2 ou 3/1, selon que l'un ou l'autre des 2 joueurs ait gagné cette partie, et cela avec un « hasard égal[4] ». Or à 2/2 il serait équitable que chacun récupère sa mise, , et à 3/1 le premier joueur serait vainqueur et recevrait la totalité des enjeux soit . Ainsi y a-t-il 2 cas aussi possibles l'un que l'autre, et le premier joueur pourrait obtenir aussi bien que ; il est donc assuré de gagner au moins . Quant à l'autre part des enjeux, , il pourrait aussi bien l'avoir que ne pas l'avoir et il est équitable qu'il en prenne la moitié, , son adversaire ayant donc droit à récupérer l'autre moitié. Dans la situation d'interruption du jeu à 2/1, le partage des enjeux doit donc se faire comme et . Toutes les autres situations peuvent être analysées de la même façon à partir de celle-là. Rôle historique et épistémologiquePascal a développé ces résultats dans le IIIe « usage » de son Traité du triangle arithmétique : « Usage du Triangle Arithmétique pour déterminer les partis qu'on doit faire entre deux joueurs qui jouent en plusieurs parties ». Par la suite, mis au courant des recherches de Pascal au cours d'un voyage à Paris en 1655[5], Christian Huygens publie en 1657 le premier ouvrage mathématique sur cette question, son Sur le calcul ès jeux de hasard[6], repris dans le livre de John Arbuthnot de 1692[7] et en première partie de l'Ars conjectandi de Jakob Bernoulli en 1713[8]. Pendant trois siècles ce problème a été considéré par les historiens des mathématiques comme l'origine de la théorie des probabilités (calcul des chances ou calcul des probabilités) ; de manière beaucoup plus subtile Georges-Théodule Guilbaud a montré au milieu du XXe siècle comment il fallait relire ces questions de partage et les recherches de Pascal sur la « Géométrie du hasard[9] » à la lumière de la théorie des jeux et dans le contexte juridique de la rupture des contrats aléatoires pour en estimer toute la capacité innovatrice[10]. C'est un programme de recherche auquel va alors se consacrer, entre autres travaux, Ernest Coumet à partir du milieu des années 1960. OriginesD'après Pascal lui-même dans sa lettre à Fermat du c'est Antoine Gombaud, chevalier de Méré, qui lui a proposé ce problème, très probablement lors de leurs rencontres chez le duc de Roannez et de leurs échanges de réflexions sur les jeux de hasard et leurs affaires[11]. On retrouve cependant la trace de ce problème chez plusieurs auteurs italiens de traités de mathématiques depuis la fin du XVe siècle : Luca Pacioli, Jérôme Cardan, Tartaglia, Peverone, une période pendant laquelle les différents auteurs proposent diverses solutions plus ou moins satisfaisantes et se critiquent. Depuis les travaux engagés par Laura Rigatelli sur les arithmétiques commerciales italiennes, on sait que ce problème apparait, dans la littérature italo-chrétienne des maîtres de calcul des marchands italiens, à la fin du XIVe siècle dans un contexte qui est celui de la rupture des contrats de compagnie, c'est-à-dire des contrats entre marchands qui s'associent dans une entreprise risquée[12]. La question reste entière de savoir s'il existerait une origine arabo-musulmane de ce problème[13]. Notes et références
Sources
Bibliographie complémentaire
Liens externes
|