Elle est présente chez pratiquement tous les êtres vivants où on l'a recherchée, des animaux aux insectes en passant par les mycètes, les plantes et les bactéries. Seules quelques bactéries qui ne possèdent pas le matériel enzymatique nécessaire à la glycolyse ne disposent pas non plus de triose-phosphate isomérase, telles que celles du genreUreaplasma.
La triose-phosphate isomérase est une enzyme particulièrement efficace, qui réalise cette réaction des milliards de fois plus rapidement que naturellement en solution. Cette réaction est tellement efficace qu'il s'agit d'une enzyme parfaite : elle n'est limitée que par la vitesse de diffusion des molécules entrant et sortant du site actif[3],[4].
La triose-phosphate isomérase est une enzyme homodimérique, c'est-à-dire qu'elle est formée de deux sous-unités identiques, contenant chacune environ 250 résidus d'acides aminés. La structure tertiaire de chaque sous-unité contient huit hélices α à l'extérieur et huit feuillets β parallèles à l'intérieur, l'ensemble formant un tonneau TIM. Le site actif de l'enzyme se trouve au centre de ce tonneau. La réaction catalysée fait intervenir des résidus de glutamate et d'histidine et la séquence entourant le site actif est conservée dans toutes les triose-phosphate isomérases connues.
La structure de cette enzyme est adaptée à sa fonction. Outre les résidus de glutamate et d'histidine judicieusement situés, une chaîne de dix ou onze résidus agit comme une boucle stabilisant l'intermédiaire réactionnel. Cette boucle, constituée des résidus 166 à 176, enferme le substrat et forme une liaison hydrogène avec son groupephosphate, ce qui stabilise l'intermédiaire ènediol et les autres états intermédiaires de la réaction[6]. En particulier, la liaison hydrogène entre l'enzyme et le groupe phosphate a pour effet de prévenir la décomposition de ces intermédiaires en méthylglyoxal et phosphate inorganique. Le méthylglyoxal est toxique et, s'il se forme, est éliminé par le système glyoxalase[7]. De plus, la formation de glyoxalate conduit à la perte d'un groupe phosphate à haut potentiel de transfert pour le reste de la glycolyse, ce qui est énergétiquement défavorable pour la cellule.
Certaines études suggèrent qu'un résidu de lysine en position 12, proche du site actif, joue également un rôle déterminant dans le fonctionnement de l'enzyme. Ce résidu est protoné à pH physiologique et pourrait ainsi contribuer à neutraliser la charge électrique négative du groupe phosphate. L'enzyme perd toute activité lorsque ce résidu est remplacé par celui d'un acide aminé neutre au cours d'une mutation génétique, tandis qu'elle conserve une certaine activité si ce résidu est remplacé par celui d'un autre acide aminé à chaîne latéralebasique[8].
La structure de la triose-phosphate isomérase facilite l'interconversion entre la dihydroxyacétone phosphate et le glycéraldéhyde-3-phosphate. Le résidunucléophile de Glu-165 de l'enzyme agit en déprotonant le substrat[9], tandis que le résidu électrophile d'His-95 cède un proton pour former l'intermédiaire ènediol[10],[11]. L'intermédiaire ènediolate déprotoné absorbe un proton du résidu de Glu-165 protoné pour donner le glycéraldéhyde-3-phosphate. La réaction inverse est catalysée de façon analogue, avec le même intermédiaire ènediol, mais avec une réaction sur l'atome d'oxygène en C2[6].
La triose-phosphate isomérase est une enzyme limitée par la diffusion des substrats — c'est-à-dire une enzyme parfaite. D'un point de vue thermodynamique, la formation de dihydroxyacétone phosphate est favorisée à 20:1 par rapport à la formation de glycéraldéhyde-3-phosphate[12]. Cependant, ce dernier est consommé par la glycéraldéhyde-3-phosphate déshydrogénase ou cours de la glycolyse, ce qui déplace l'équilibre vers la formation de ce composé au détriment du dihydroxyacétone phosphate.
↑(en) T. Kinoshita, R. Maruki, M. Warizaya, H. Nakajima et S. Nishimura, « Structure of a high-resolution crystal form of human triosephosphate isomerase: improvement of crystals using the gel-tube method », Acta Crystallographica Section F, vol. 61, no Pt 4, , p. 346-349 (PMID16511037, PMCID1952429, DOI10.1107/S1744309105008341, lire en ligne)
↑ a et b(en) W. John Albery et Jeremy R. Knowles, « Free-energy profile for the reaction catalyzed by triosephosphate isomerase », Biochemistry, vol. 15, no 25, , p. 5627-5631 (PMID999838, DOI10.1021/bi00670a031, lire en ligne)
↑(en) Irwin A. Rose, Wen Jian Fung et Jessie V. B. Warms, « Proton diffusion in the active site of triosephosphate isomerase », Biochemistry, vol. 29, no 18, , p. 4312-4317 (PMID2161683, DOI10.1021/bi00470a008, lire en ligne)
↑(en) Donald J. Creighton et Diana S. Hamilton, « Brief History of Glyoxalase I and What We Have Learned about Metal Ion-Dependent, Enzyme-Catalyzed Isomerizations », Archives of Biochemistry and Biophysics, vol. 387, no 1, , p. 1-10 (PMID11368170, DOI10.1006/abbi.2000.2253, lire en ligne)
↑(en) Patricia J. Lodi, Louise C. Chang, Jeremy R. Knowles et Elizabeth A. Komives, « Triosephosphate Isomerase Requires a Positively Charged Active Site: The Role of Lysine-12 », Biochemistry, vol. 33, no 10, , p. 2809-2814 (PMID8130193, DOI10.1021/bi00176a009, lire en ligne)
↑(en) T. Alber, D. W. Banner, A. C. Bloomer, G. A. Petsko, David Phillips, P. S. Rivers et I. A. Wilson, « On the Three-Dimensional Structure and Catalytic Mechanism of Triose Phosphate Isomerase », Philosophical Transactions B, vol. 293, no 1063, , p. 159-171 (PMID6115415, DOI10.1098/rstb.1981.0069, lire en ligne)
↑(en) Elliott B. Nickbarg, Robert C. Davenport, Gregory A. Petsko et Jeremy R. Knowles, « Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism », Biochemistry, vol. 27, no 16, , p. 5948-5960 (PMID2847777, DOI10.1021/bi00416a019, lire en ligne)
↑(en) Elizabeth A. Komives, Louise C. Chang, Elias Lolis, Robert F. Tilton, Gregory A. Petsko et Jeremy R. Knowles, « Electrophilic catalysis in triosephosphate isomerase: the role of histidine-95 », Biochemistry, vol. 30, no 12, , p. 3011-3019 (PMID2007138, DOI10.1021/bi00226a005, lire en ligne)
↑(en) Thomas K. Harris, Robert N. Cole, Frank I. Comer et Albert S. Mildvan, « Proton Transfer in the Mechanism of Triosephosphate Isomerase », Biochemistry, vol. 37, no 47, , p. 16828-16838 (PMID9843453, DOI10.1021/bi982089f, lire en ligne)
↑(en) Anne-Marie Lambeir, Fred R. Opperdoes et Rik K. Wierenga, « Kinetic properties of triose-phosphate isomerase from Trypanosoma brucei brucei », The FEBS Journal, vol. 168, no 1, , p. 69-74 (PMID3311744, DOI10.1111/j.1432-1033.1987.tb13388.x, lire en ligne)
↑(en) Elias Lolis et Gregory A. Petsko, « Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-Å resolution: implications for catalysis », Biochemistry, vol. 29, no 28, , p. 6619-6625 (PMID2204418, DOI10.1021/bi00480a010, lire en ligne)