où B1,2,3 et C1,2,3 sont les coefficients de Sellmeier, propres à un matériau et déterminés expérimentalement. Ces coefficients sont généralement déterminés pour λ mesuré en micromètres (µm). λ est la longueur d'onde dans le vide et non pas celle dans le milieu d'intérêt, qui est .
Une forme différente de l'équation est parfois utilisée pour certains types de matériaux, par exemple les cristaux[réf. nécessaire]. Les coefficients de Sellmeier pour les verres optiques sont indiqués généralement dans les spécifications du verre lui-même.
Origine
L'équation de Sellmeier résulte d'une approximation dans laquelle on considère que les particules du milieu réagissent au champ électromagnétique incident à la manière d'oscillateurs harmoniques. Dans le cadre de cette modélisation, on aboutit à la formule : ,
où M représente le nombre de pics de résonance pour les oscillateurs harmoniques aux longueurs d'onde λj, Bj des constantes obtenues empiriquement en adaptant le modèle aux mesures[3].
Chaque terme de la somme représente une résonance d'absorption de force Bi à la longueur d'onde √Ci. Par exemple, les coefficients pour le verre BK7 ci-dessous correspondent à deux résonances d'absorption dans l'ultraviolet, et une dans l'infrarouge. Près de chaque pic d'absorption, l'équation donne la valeur non-physique de n=±∞, et un modèle de dispersion plus précis, tel que le modèle de dispersion d'Helmoltz, est requis pour décrire adéquatement ces régions.
Aux longueurs longueurs d'onde éloignées des pics d'absorption, la valeur de n tend vers :
L'équation de Sellmeier peut également prendre la forme :
où le coefficient A est une approximation de la contribution de l'absorption des courtes longueurs d'onde (par exemple, ultraviolet) à l'indice de réfraction dans les longueurs d'onde plus grandes.
↑(de) Wilhelm Sellmeier, « Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen », Annalen der Physik und Chemie, no 219, , p. 272-282
↑(en) Refractive index and dispersion, Schott AG, coll. « Technical information » (no 29) (lire en ligne)
↑(en) Alexis Mendez et T. F. Morse, Specialty optical fibers handbook, , 840 p. (lire en ligne), p. 39