Share to: share facebook share twitter share wa share telegram print page

 

Washburn-egyenlet

A Washburn-egyenlet a kapilláris jelenséget írja le párhuzamos hengeres csöveknél, és kiterjeszthető porozús anyagoknál a folyadék felszívódásra. Az egyenletet Edward Wight Washburn (1881 -1934), amerikai fizikusról[1] nevezték el. Az egyenletet Lucas–Washburn egyenletnek is ismerik, mivel Richard Lucas,[2] német fizikus hasonló publikációt jelentetett meg. Az egyenletnek van még egy harmadik neve is: Bell-Cameron-Lucas-Washburn egyenlet.[3]

Egy nedves kapillárisnál:

ahol

a időtartam (dinamikus viszkozitás)

dinamikus viszkozitás

a felületi feszültség

a behatolás távolsága a kapillárisba

.a pórus átmérője

Porozús anyagoknál több értelmezése is lehet a pórusok átmérőjének, egy valós lehetőség a számításokhoz az érintkezési szög figyelembe vétele.[4] Az érintkezési szög, a folyadék és az őt körülvevő szilárd anyag kapcsolatát fejezi ki. Az egyenletet hengeres cső kapillaritásából vezették le, gravitációs erő hiányában. 1921-ben, Washburn a dolgozatában Poiseuille-törvényre hivatkozik, mely kör keresztmetszetű csőben mozgó folyadékokra vonatkozik. Az egyenletbe behelyettesítve hosszúság differenciális kifejezését, , kapjuk:

ahol a részt vevő nyomások szummája; az atmoszferikus nyomás (), a hidrosztatikus nyomás (), és a kapilláris erő ekvivalens nyomása ().

a folyadék viszkozitás,

a csúszási együttható, mely 0 nedves anyagoknál,

a kapilláris sugara.

A nyomás:

ahol

a folyadék sűrűsége

a felületi feszültség

az érintkezési szög.

A kifejezéseket behelyettesítve, egy első rendű differenciálegyenlethez vezet a csőben : távolságra penetráló folyadékra:

Irodalom

  • Simonovits András: Válogatott fejezetek a matematika történetéből. (hely nélkül): Typotex Kiadó. 2009. 109–113. o. ISBN 978-963-279-026-8  

Kapcsolódó szócikkek

Jegyzetek

  1. http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/washburn-edward.pdf
  2. Lucas, R. (1918). "Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten". Kolloid Z. 23: 15.
  3. Bell, J.M. and Cameron, F.K. (1906). "The flow of liquids through capillary spaces". J. Phys. Chem. 10: 658–674.
  4. Marco, Brugnara; Claudio, Della Volpe; Stefano, Siboni (2006). "Wettability of porous materials. II. Can we obtain the contact angle from the Washburn equation?". In Mittal, K. L.. Contact Angle, Wettability and Adhesion. Mass. VSP.

Information related to Washburn-egyenlet

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya