メッツラー行列数学の分野におけるメッツラー行列(めっつらーぎょうれつ、英語: Metzler matrix)とは、全ての非対角成分が非負(0 以上)であるような行列のことである。すなわち が成立するような行列 M のことをメッツラー行列という。その名はアメリカの経済学者のロイド・メッツラーにちなむ。 概要メッツラー行列は遅延微分方程式系や正線型力学系の安定性解析においてよく登場する。それらの系の性質は、メッツラー行列 M に対し M + aI(a は定数のスカラー、I は単位行列)の形を持つ行列に対して、非負行列の理論を適用することで導かれる。 定義と用語数学の特に線型代数学の分野において、対角成分を除く全ての成分が非負であるような行列はメッツラー、準正あるいは本質的に非負などと呼ばれ、統一されてはいない。メッツラー行列は、Z-行列の非対角成分にマイナスをかけたものであることから、しばしば Z(−)-行列などとも表記される。 性質関連する定理参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve