^Pople, J. A.; Seeger, R.; Krishnan, R. (1977). “Variational configuration interaction methods and comparison with perturbation theory”. International Journal of Quantum Chemistry12 (S11): 149–163. doi:10.1002/qua.560120820.
^Pople, John A.; Binkley, J. Stephen; Seeger, Rolf (1976). “Theoretical models incorporating electron correlation”. International Journal of Quantum Chemistry10 (S10): 1–19. doi:10.1002/qua.560100802.
^Krishnan, Raghavachari; Pople, John A. (1978). “Approximate fourth-order perturbation theory of the electron correlation energy”. International Journal of Quantum Chemistry14 (1): 91–100. doi:10.1002/qua.560140109.
^Raghavachari, Krishnan.; Pople, John A.; Replogle, Eric S.; Head-Gordon, Martin (1990). “Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order”. The Journal of Physical Chemistry94 (14): 5579–5586. doi:10.1021/j100377a033.
^Leininger, Matthew L.; Allen, Wesley D.; Schaeferd, Henry F.; Sherrill, C. David (2000). “Is Moller–Plesset perturbation theory a convergent ab initio method?”. J. Chem. Phys.112 (21): 9213–9222. Bibcode: 2000JChPh.112.9213L. doi:10.1063/1.481764.
^Handy, Nicholas C.; Schaefer, Henry F. (1984). “On the evaluation of analytic energy derivatives for correlated wave functions”. The Journal of Chemical Physics81 (11): 5031. Bibcode: 1984JChPh..81.5031H. doi:10.1063/1.447489.
^Wiberg, Kenneth B.; Hadad, Christopher M.; Lepage, Teresa J.; Breneman, Curt M.; Frisch, Michael J. (1992). “Analysis of the effect of electron correlation on charge density distributions”. The Journal of Physical Chemistry96 (2): 671. doi:10.1021/j100181a030.
^Hubač, Ivan; Čársky, Petr (1980). “Correlation energy of open-shell systems. Application of the many-body Rayleigh-Schrödinger perturbation theory in the restricted Roothaan-Hartree-Fock formalism”. Physical Review A22 (6): 2392–2399. Bibcode: 1980PhRvA..22.2392H. doi:10.1103/PhysRevA.22.2392.
^Amos, Roger D.; Andrews, Jamie S.; Handy, Nicholas C.; Knowles, Peter J. (1991). “Open-shell Møller—Plesset perturbation theory”. Chemical Physics Letters185 (3–4): 256–264. Bibcode: 1991CPL...185..256A. doi:10.1016/S0009-2614(91)85057-4.
^Knowles, Peter J.; Andrews, Jamie S.; Amos, Roger D.; Handy, Nicholas C.; Pople, John A. (1991). “Restricted Møller—Plesset theory for open-shell molecules”. Chemical Physics Letters186 (2–3): 130–136. Bibcode: 1991CPL...186..130K. doi:10.1016/S0009-2614(91)85118-G.
^Lauderdale, Walter J.; Stanton, John F.; Gauss, Jürgen; Watts, John D.; Bartlett, Rodney J. (1991). “Many-body perturbation theory with a restricted open-shell Hartree—Fock reference”. Chemical Physics Letters187 (1–2): 21–28. Bibcode: 1991CPL...187...21L. doi:10.1016/0009-2614(91)90478-R.
^Kozlowski, P. M.; Davidson, Ernest R. (1994). “Construction of open shell perturbation theory invariant with respect to orbital degeneracy”. Chemical Physics Letters226 (5–6): 440–446. Bibcode: 1994CPL...226..440K. doi:10.1016/0009-2614(94)00763-2.
^Murray, Christopher W.; Handy, Nicholas C. (1992). “Comparison and assessment of different forms of open shell perturbation theory”. The Journal of Chemical Physics97 (9): 6509. Bibcode: 1992JChPh..97.6509M. doi:10.1063/1.463680.
^Murray, Christopher; Davidson, Ernest R. (1992). “Different forms of perturbation theory for the calculation of the correlation energy”. International Journal of Quantum Chemistry43 (6): 755. doi:10.1002/qua.560430604.
^Fletcher, Graham D; Gordon, Mark S; Bell, Robert S (2002). “Gradient of the ZAPT2 energy”. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)107 (2): 57. doi:10.1007/s00214-001-0304-z.
^Roos, Bjrn O; Andersson, Kerstin; Flscher, Markus P; Malmqvist, Per-ke; Serrano-Andrs, Luis; Pierloot, Kristin; Merchn, Manuela (1996). “Multiconfigurational Perturbation Theory: Applications in Electronic Spectroscopy”. Advances in Chemical Physics. Advances in Chemical Physics. 93. pp. 219. doi:10.1002/9780470141526.ch5. ISBN978-0-470-14152-6
^Nakano, Haruyuki (1993). “Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions”. The Journal of Chemical Physics99 (10): 7983–7992. Bibcode: 1993JChPh..99.7983N. doi:10.1063/1.465674.
^Granovsky, A. A. (2011). “Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory”. J. Chem. Phys.134 (21): 214113. Bibcode: 2011JChPh.134u4113G. doi:10.1063/1.3596699. PMID21663350.
^Davidson, Ernest R.; Jarzecki, A. A. (1999). K. Hirao. ed. Recent Advances in Multireference Methods. World Scientific. pp. 31–63. ISBN978-981-02-3777-6
^Glaesemann, Kurt R.; Gordon, Mark S.; Nakano, Haruyuki (1999). “A study of FeCO+ with correlated wavefunctions”. Physical Chemistry Chemical Physics1 (6): 967–975. Bibcode: 1999PCCP....1..967G. doi:10.1039/a808518h.
^Stefan Grimme (2003). “Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies”. J. Chem. Phys.118: 9095–9102. doi:10.1063/1.1569242.
^Yousung Jung; Rohini C. Lochan; Anthony D. Dutoi; Martin Head-Gordon (2004). “Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method”. J. Chem. Phys.121: 9793–9802. doi:10.1063/1.1809602.
^Martin Feyereisen; George Fitzgerald; Andrew Komornicki (1993). “Use of approximate integrals in ab initio theory. An application in MP2 energy calculations”. Chemical Physics Letters208: 359–363. doi:10.1016/S0009-2614(98)00862-8.
^O. Vahtras; J. Almlöf; M. W. Feyereisen (1993). “Integral approximations for LCAO-SCF calculations”. Chemical Physics Letters5–6: 514–518. doi:10.1016/0009-2614(93)89151-7.