Paraboloida eliptycznaParaboloida eliptyczna to nieograniczona powierzchnia drugiego stopnia mająca jedną oś i dwie wzajemnie prostopadłe płaszczyzny symetrii, jedna z dwóch odmian paraboloidy. Powierzchnia ta powstaje w wyniku przesunięcia paraboli wzdłuż innej paraboli, przy czym obie te parabole spełniają następujące warunki[1]:
W przypadku, gdy parabole są przystające, otrzymana powierzchnia jest paraboloidą obrotową. Paraboloidę eliptyczną można też opisać inaczej: jeśli mamy daną elipsę F, prostą Z przechodzącą przez jej środek, prostopadłą do płaszczyzny F, oraz punkt W na prostej Z poza płaszczyzną F, to paraboloidę eliptyczną tworzą wszystkie parabole o osi symetrii Z przechodzące przez punkt W i elipsę F. Równanie paraboloidy eliptycznej ma postać[1]: Przekrój paraboloidy eliptycznej płaszczyzną prostopadłą do osi symetrii jest elipsą, a dowolną płaszczyzną równoległą do tej osi jest parabolą. Kształt paraboloidy eliptycznej mają samochodowe reflektory, ponieważ światło wychodzące z żarówki umieszczonej w ognisku jednej z parabol tworzących tę paraboloidę po odbiciu rozchodzi się w płaszczyźnie drugiej z tych parabol. Zobacz teżPrzypisy
Linki zewnętrzne
|