Axioma do conjunto vazioEm teoria axiomática dos conjuntos, o axioma do conjunto vazio é um postulado lógico para garantir, formalmente, a existência de um conjunto sem elementos. O axioma possui, usando-se a linguagem da lógica formal[1], o seguinte enunciado: Em palavras,
Em algumas formulações da axiomática de Zermelo-Fraenkel, o axioma do conjunto vazio vem incluso no axioma do infinito; em outras não. Contudo, em qualquer modelo axiomático da teoria dos conjuntos que admita a existência de um conjunto e possua o axioma-esquema da separação, como Zermelo-Fraenkel, o axioma do conjunto vazio é derivado como teorema. Realmente, escolhe-se um predicado contraditório e aplica-se o axioma-esquema da separação para tal predicado. Por exemplo, se é um conjunto, escolhendo temos que é um conjunto vazio. Numa teoria axiomática de conjuntos em que o axioma-esquema da separação não é assumido, é preciso prová-lo como teorema usando o axioma-esquema da substituição; e, dependendo de como se formula o axioma-esquema da substituição, pode ser necessário assumir o axioma do conjunto vazio. NotasReferências
Ligações externas
|