Teste de BartlettEm estatística, o teste de Bartlett, batizado em homenagem a Maurice Stevenson Bartlett,[1] é usado para testar a homocedasticidade, ou seja, se várias amostras são de populações com variâncias iguais.[2] Alguns testes estatísticos, como a análise de variância, presumem que as variâncias são iguais entre grupos ou amostras, o que pode ser verificado com o teste de Bartlett. Em um teste de Bartlett, utiliza-se a hipótese nula e a alternativa. Para este propósito, vários procedimentos de teste foram planejados. O procedimento de teste devido ao teste de Bartlett MSE (Mean Square Error/Estimator) é representado aqui. Este procedimento de teste é baseado na estatística cuja distribuição amostral é aproximadamente uma distribuição Qui-Quadrado com (k − 1) graus de liberdade, onde k é o número de amostras aleatórias, que podem variar em tamanho e são extraídas de distribuições normais independentes. O teste de Bartlett é sensível a desvios da normalidade. Ou seja, se as amostras vierem de distribuições não normais, o teste de Bartlett pode simplesmente testar a não normalidade. O teste de Levene e o teste de Brown-Forsythe são alternativas ao teste de Bartlett menos sensíveis a desvios da normalidade.[3] EspecificaçãoO teste de Bartlett é usado para testar a hipótese nula, H0 de que todas as k variâncias populacionais são iguais contra a alternativa de que pelo menos duas são diferentes. Se houver k amostras com tamanhos e variações de amostra então a estatística de teste de Bartlett é Onde e é a estimativa combinada para a variância. A estatística de teste tem aproximadamente uma distribuição . Assim, a hipótese nula é rejeitada se (Onde é o valor crítico da cauda superior para a distribuição ). Ver tambémReferências
Information related to Teste de Bartlett |