Ионные каналыИо́нные кана́лы — порообразующие белки (одиночные либо целые комплексы), поддерживающие разность потенциалов, которая существует между внешней и внутренней сторонами клеточной мембраны всех живых клеток. Относятся к транспортным белкам. С их помощью ионы перемещаются согласно их электрохимическим градиентам сквозь мембрану. Такие комплексы представляют собой набор идентичных или гомологичных белков, плотно упакованных в липидном бислое мембраны вокруг водной поры. Каналы расположены в плазмалемме и некоторых внутренних мембранах клетки. Через ионные каналы проходят ионы Na+ (натрия), K+ (калия), Cl− (хлора) и Ca2+ (кальция). Из-за открывания и закрывания ионных каналов меняется концентрация ионов по разные стороны мембраны и происходит сдвиг мембранного потенциала. Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры обычно имеются молекулярные системы открытия, закрытия, избирательности, инактивации, рецепции и регуляции. Ионные каналы могут иметь несколько участков (сайтов) для связывания с управляющими веществами. Типы ионных каналовКлассификация ионных каналов проводится по различным параметрам и поэтому единой унифицированной классификации для них пока не существует. Так, возможна классификация по структуре (строению) и происхождению от однотипных генов. По этому принципу, например, выделяют три семейства лиганд-активируемых ионных каналов[1]:
При этом в одно и то же семейство попадают ионные каналы с разной ионной селективностью, а также с рецепторами к разным лигандам. Но зато образующие эти каналы белки имеют большое сходство в строении и происхождении. Ионные каналы также можно классифицировать по селективности в зависимости от проходящих через них ионов: натриевые, калиевые, кальциевые, хлорные, протонные (водородные). Согласно функциональной классификации[2], ионные каналы группируются по способам управления их состоянием на следующие виды:
Наиболее часто встречаются два типа каналов: ионные каналы с лиганд-зависимыми воротами (находятся, в частности, в постсинаптической мембране нервно-мышечных соединений) и ионные каналы с потенциал-зависимыми воротами. Лиганд-зависимые каналы превращают химические сигналы, приходящие к клетке, в электрические; они необходимы, в частности, для работы химических синапсов. Потенциал-зависимые каналы нужны для распространения потенциала действия. Работа ионных каналовНеуправляемые (независимые) ионные каналыЭти каналы обычно находятся в открытом состоянии и постоянно пропускают через себя ионы за счёт диффузии по градиенту их концентрации и/или по электрическому градиенту зарядов по обе стороны мембраны. Некоторые неуправляемые каналы различают вещества и пропускают через себя по градиенту концентрации все молекулы меньше определённой величины, их называют «неселективные каналы» или «поры». Существуют также «селективные каналы», которые благодаря своему диаметру и строению внутренней поверхности переносят только определённые ионы. Примеры: калиевые каналы, участвующие в формировании мембранного потенциала покоя, хлоридные каналы, эпителиальные натриевые каналы, анионные каналы эритроцитов.[3] Потенциал-зависимые ионные каналыЭти каналы (кальциевые каналы L-[англ.], N-[англ.], P-[англ.], Q-[англ.], R-[англ.], T-типов[англ.], Потенциал-зависимый анионный канал[англ.]) отвечают за распространение потенциала действия, они открываются и закрываются в ответ на изменение мембранного потенциала. Например, натриевые каналы. Если мембранный потенциал поддерживается на уровне потенциала покоя, натриевые каналы закрыты и натриевый ток отсутствует. Если мембранный потенциал сдвигается в положительную сторону, то натриевые каналы откроются, и в клетку начнут входить ионы натрия по градиенту концентрации. Через 0,5 мс после установления нового значения мембранного потенциала, этот натриевый ток достигнет максимума. А ещё через несколько миллисекунд падает почти до 12. Во время покоя мембранного потенциала, внутриклеточная концентрация ионов натрия 12 ммоль/литр, а внеклеточная концентрация 145 ммоль/литр. Это значит, что каналы через некоторое время закрываются вследствие инактивации, даже если клеточная мембрана остается деполяризованной. Но закрывшись, они отличаются от состояния, в котором находились до открытия, теперь они не могут открываться в ответ на деполяризацию мембраны, то есть они инактивированы. В таком состоянии они останутся до тех пор, пока мембранный потенциал не вернется к исходному значению и не пройдет восстановительный период, занимающий несколько миллисекунд. Лиганд-зависимые ионные каналыЭти каналы открываются, когда медиатор, связываясь с их наружными рецепторными участками, меняет их конформацию. Открываясь, они впускают ионы, изменяя этим мембранный потенциал. Лиганд-зависимые каналы почти нечувствительны к изменению мембранного потенциала. Они генерируют электрический потенциал, сила которого зависит от количества медиатора, поступающего в синаптическую щель и времени, которое он там находится. Свойства ионных каналовДля каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого — только ионы натрия и т. д. Селективность — это избирательно повышенная проницаемость ионного канала для определённых ионов и пониженная для других. Такая избирательность определяется селективным фильтром — самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд. Управляемая проницаемость — это способность открываться или закрываться при определённых управляющих воздействиях на канал. Инактивация — это способность ионного канала через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать. Блокировка — это способность ионного канала под действием веществ-блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. Блокировку вызывают вещества-блокаторы, которые могут называться антагонистами, блокаторами или литиками. Пластичность — это способность ионного канала изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность — это фосфорилирование аминокислот канальных белков с цитоплазматической стороны мембраны ферментами-протеинкиназами. ОткрытиеОсновоположником мембранной теории биопотенциалов был Юлиус Бернштейн. Модель ионных каналов описали Алан Ходжкин и Эндрю Хаксли в цикле статей в 1952 году. За открытия, касающиеся ионных механизмов возбуждения и торможения в периферических и центральных участках мембраны нервных клеток, А. Ходжкин и Э. Хаксли получили Нобелевскую премию по физиологии и медицине 1963 года. Они разделили ее с Джоном Экклсом, который изучал механизмы транспорта различных ионов в возбуждающих и тормозных синапсах. Классические работы Ходжкина и Хаксли послужили основой для последующих исследований структурно-функциональной организации и механизмов регуляции ионных каналов различных типов типов Ионный канал в искусствеСкульптура Рождение Идеи высотой 1,5 метра, в основу которой положена структура калиевого канала KcsA, была создана для лауреата Нобелевской премии Родерика Маккинона (Roderick MacKinnon)[4]. Работа содержит проволочный каркас, удерживающий выдутый из жёлтого стекла объект, который репрезентирует основную полость канальной структуры. См. также
Примечания
Библиография
Ссылки |