Постоянные Фейгенбаума
Постоянные Фейгенбаума — универсальные постоянные, характеризующие бесконечный каскад бифуркаций удвоения периода при переходе к Динамическому хаосу (сценарий Фейгенбаума). Открыты Митчеллом Фейгенбаумом в 1975 году. Первая константа ФейгенбаумаОдна из простейших динамических систем, где происходит каскад бифуркаций — это рекуррентные последовательности , где — некоторый параметр. Один из простейшиx примеров функции — логистическое отображение
В зависимости от параметра , в системе может присутствовать неподвижная точка или предельный цикл. При изменении может произойти бифуркация, при которой предельный цикл удваивает свой период. Обозначим за значения , при которых происходит удвоение периода. Оказывается, что при больших значения сходятся к фиксированному значению . Сходимость происходит по геометрической прогрессии, причём показатель этой геометрической прогрессии оказывается одинаковым для широкого класса функций (универсальность Фейгенбаума). Этот показатель называется первой константой Фейгенбаума[1] При динамика системы становится хаотичной. Физический смысл первой константы Фейгенбаума — скорость перехода к хаосу систем, испытывающих удвоение периода. Она характеризует каскад удвоения периода во многих сложных динамических системах, таких, как система Рёсслера, турбулентность, рост популяций и пр. Вторая константа ФейгенбаумаВторая константа Фейгенбаума[2]
определяется как предел отношения между шириной ветвей на диаграмме бифуркаций (см. рисунок). Эта константа тоже возникает в описании многих динамических систем. Свойства констант ФейгенбаумаПредполагается, что обе константы являются трансцендентными, хотя это ещё не доказано. См. такжеСсылки
Примечания
|