Share to: share facebook share twitter share wa share telegram print page

Римские цифры

Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Грузинская
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Ри́мские ци́фры — цифры, использовавшиеся древними римлянами в их непозиционной системе счисления.

Натуральные числа записываются при помощи повторения этих цифр. При этом, если бо́льшая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая стоит перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры.

Римские цифры появились за 500 лет до нашей эры у этрусков[источник не указан 246 дней] (см. этрусский алфавит), которые могли заимствовать часть цифр у протокельтов[источник не указан 246 дней].

Цифры

Римские обозначения чисел известны ныне лучше, чем любая другая древняя система счисления. Объясняется это не столько какими-то особыми достоинствами римской системы, сколько тем огромным влиянием, которым пользовалась Римская империя в своё время. Этруски, завоевавшие Рим в VII веке до н. э., испытали на себе влияние восточно-средиземноморских культур. Этим отчасти объясняется сходство основных принципов римской и аттической систем счисления. Обе системы были десятичными[источник не указан 246 дней], хотя в обеих системах счисления особую роль играло число пять. Обе системы использовали при записи чисел повторяющиеся символы.

Старыми римскими символами для обозначения чисел 1, 5, 10, 100 и 1000 (индо-арабской записи) были, соответственно, символы I, V, X, Θ (или , или ) и Φ (или , или CIƆ). Хотя о первоначальном значении этих символов было написано много, их удовлетворительного объяснения нет до сих пор. Согласно одной из распространённых теорий, римская цифра V изображает раскрытую руку с четырьмя прижатыми друг к другу пальцами и отставленным большим пальцем; символ X, согласно той же теории, изображает две скрещённые руки или сдвоенную цифру V. Символы чисел 100 и 1000, возможно, берут начало от греческих букв Θ и φ. Неизвестно, произошли ли более поздние обозначения C и M от старых римских символов или они акрофонически связаны с начальными буквами латинских слов, означавших 100 (центум) и 1000 (милле). Полагают, что римский символ числа 500, буква D, возник из половинки старого символа, обозначавшего 1000. Если не считать, что большинство римских символов, скорее всего, не были акрофоническими и что промежуточные символы для обозначения чисел 50 и 500 не были комбинациями символов чисел 5 и 10 или 5 и 100, то в остальном римская система счисления напоминала аттическую. Римляне часто использовали принцип вычитания, поэтому иногда вместо VIIII использовали IX, а вместо LXXXX — XC; сравнительно позднее — символ IV вместо IIII. Поэтому ныне все римские цифры можно записать заглавными латинскими буквами.

В целом римляне не были склонны заниматься математикой, поэтому не испытывали особой потребности в больших числах. Тем не менее, для обозначения 10 000 они эпизодически использовали символ CCIƆƆ, а для числа 100 000 — символ CCCIƆƆƆ. Половинки этих символов иногда использовались для обозначения чисел 5000 (IƆƆ) и 50000 (IƆƆƆ).

Настенные башенные часы в Венеции с написанием чисел VIIII для обозначения девятого часа и IIII для обозначения четвёртого часа
1 I unus, unum
5 V quinque
10 X decem
50 L quinquaginta
100 C centum
500 D quingenti
1000 M mille

Дроби

Дробей римляне избегали так же упорно, как и больших чисел. В практических задачах, связанных с измерениями, они не использовали дроби, подразделяя единицу измерения обычно на 12 частей, с тем чтобы результат измерения представить в виде составного числа, суммы кратных различных единиц, как это делается сегодня, когда длину выражают в ярдах, футах и дюймах. Английские слова ounceунция») и inchдюйм») происходят от латинского слова uncia («унция»), обозначавшего одну двенадцатую основной единицы длины[1][2].

Символ 1/2 — буква S использовался в обозначениях номинала монет республиканского периода, однако позднее вышел из употребления. Унция (1/12) обозначалась точкой (·) или (на монетах) в виде маленького выпуклого полушария, иногда — горизонтальной чертой (-), а также (в скорописи) знаками и; обозначением ½ унции (семунции) служили знаки Σ, Є, £, сицилика — Ɔ, секстулы — 𐆓, скрупула — . Однако на практике двенадцатиричные дроби чаще всего изображались сочетанием точек и символа S.

Запись чисел

Арабская запись Римская запись
1 I
2 II
3 III
4 IV
5 V
6 VI
7 VII
8 VIII
9 IX
10 X
11 XI
12 XII
13 XIII
14 XIV
15 XV
16 XVI
17 XVII
18 XVIII
19 XIX
20 XX
30 XXX
40 XL
50 L
60 LX
70 LXX
80 LXXX
90 XC
100 C
200 CC
300 CCC
400 CD
500 D; IƆ
600 DC; IƆC
700 DCC; IƆCC
800 DCCC; IƆCCC
900 CM; CCIƆ
1000 M; ↀ; CIƆ
2000 MM; CIƆCIƆ
3000 MMM; CIƆCIƆCIƆ
3999 MMMCMXCIX; CIƆCIƆCIƆCCIƆXCIX
4000 MV; ↀↁ; CIƆIƆƆ
5000 V; ↁ; IƆƆ
6000 VM; ↁↀ; IƆƆCIƆ
7000 VMM; ↁↀↀ; IƆƆCIƆCIƆ
8000 VMMM; ↁↀↀↀ; IƆƆCIƆCIƆCIƆ
9000 MX; ↀↂ; CIƆCCIƆƆ
10 000 X; ↂ; CCIƆƆ
20 000 XX; ↂↂ; CCIƆƆCCIƆƆ
30 000 XXX; ↂↂↂ; CCIƆƆCCIƆƆCCIƆƆ
40 000 XL; ↂↇ; CCIƆƆIƆƆƆ
50 000 L; ↇ; IƆƆƆ
60 000 LX; ↇↂ; IƆƆƆCCIƆƆ
70 000 LXX; ↇↂↂ; IƆƆƆCCIƆƆCCIƆƆ
80 000 LXXX; ↇↂↂↂ; IƆƆƆCCIƆƆCCIƆƆCCIƆƆ
90 000 XC; ↂↈ; CCIƆƆCCCIƆƆƆ
100 000 C; ↈ; CCCIƆƆƆ
200 000 CC; ↈↈ; CCCIƆƆƆCCCIƆƆƆ
300 000 CCC; ↈↈↈ; CCCIƆƆƆCCCIƆƆƆCCCIƆƆƆ
400 000 CD; CCCIƆƆƆIƆƆƆƆ
500 000 D; IƆƆƆƆ
600 000 DC; IƆƆƆƆCCCIƆƆƆ
700 000 DCC; IƆƆƆƆCCCIƆƆƆCCCIƆƆƆ
800 000 DCCC
900 000 CM
1 000 000 M
2 000 000 MM
3 000 000 MMM
4 000 000 MV
5 000 000 V
6 000 000 VM
7 000 000 VMM
8 000 000 VMMM
9 000 000 MX
10 000 000 X
100 000 000 C
1 000 000 000 M
1 000 000 000 000 M
1 000 000 000 000 000 000 000 000 000 000 000 M
10^100 X^C

Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц.

В системе римских цифр отсутствует ноль, но ранее использовалось обозначение нуля как nulla («нет»), nihil («ничто») и N (первая буква этих слов).

При этом некоторые из цифр (I, X, C, M) могут повторяться, но не более трёх раз подряд; таким образом, с их помощью можно записать любое натуральное число не более 3999 (MMMCMXCIX). В ранние периоды существовали знаки для обозначения бо́льших цифр — 5000, 10 000, 50 000 и 100 000[источник не указан 5016 дней] (тогда максимальное число по упомянутому правилу равно 399 999). При записи чисел в римской системе счисления меньшая цифра может стоять справа от большей; в этом случае она прибавляется к ней. Например, число 283 по-римски записывается как CCLXXXIII, то есть 100+100+50+10+10+10+1+1+1=283. Здесь цифра, изображающая сотню, повторена два раза, а цифры, изображающие соответственно десяток и единицу, повторены по три раза.

Пример: число 1988. Одна тысяча M, девять сотен CM, восемь десятков LXXX, восемь единиц VIII. Запишем их вместе: MCMLXXXVIII.

Довольно часто, чтобы выделить числа в тексте, над ними рисовали черту: LXIV. Иногда черту рисовали и сверху, и снизу: XXXII — в частности, так принято выделять римские цифры в русском рукописном тексте (в типографском наборе это не используют из-за технической сложности). У других авторов черта сверху могла обозначать увеличение значения цифры в 1000 раз: V = 5000.

Часы марки Tissot с традиционным написанием IIII

Повсеместно записывать число «четыре» как IV стали только в XIX веке, до этого наиболее часто употреблялась запись IIII. Однако запись IV можно встретить уже в документах манускрипта Forme of Cury, датируемых 1390 годом. На циферблатах часов в большинстве случаев традиционно используется IIII вместо IV, главным образом, по эстетическим соображениям, такое написание обеспечивает визуальную симметрию с цифрами VIII на противоположной стороне, а перевёрнутую IV прочесть труднее, чем IIII. Существует и версия, что IV на циферблате не писалось потому, что IV — первые буквы латинского имени бога Юпитера (IVPITER)[источник не указан 246 дней].

Меньшая цифра может быть записана и слева от большей, тогда её следует вычесть из большей. При этом вычитаться могут только цифры, обозначающие 1 или степени 10, а в качестве уменьшаемого выступать только ближайшие в числовом ряду к вычитаемой две цифры (то есть вычитаемое, умноженное на 5 или 10). Повторения меньшей цифры не допускаются. Таким образом, существует только шесть вариантов использования «правила вычитания»:

  • IV = 4
  • IX = 9
  • XL = 40
  • XC = 90
  • CD = 400
  • CM = 900

Например, число 94 будет XCIV = 100 − 10 + 5 − 1 = 94 — так называемое «правило вычитания» (появилось в эпоху поздней античности, а до этого римляне писали число 4 как IIII, а число 40 — как XXXX).

Другие способы «вычитания» недопустимы; так, число 99 должно быть записано как XCIX, но не как IC. Однако, в наши дни в некоторых случаях используется и упрощенная запись римских чисел, например, в программе Microsoft Excel при преобразовании арабских цифр в римские при помощи функции «РИМСКОЕ()» можно использовать несколько видов представления чисел, от классического до сильно упрощённого (так, число 499 может быть записано как CDXCIX, LDVLIV, XDIX, VDIV или ID). Упрощение состоит в том, что для уменьшения какой-либо цифры слева от неё может писаться любая другая цифра:

  • 999. Тысяча (M), вычтем 1 (I), получим 999 (IM) вместо CMXCIX. Следствие: 1999 — MIM вместо MCMXCIX
  • 95. Сто (C), вычтем 5 (V), получим 95 (VC) вместо XCV
  • 1950: Тысяча (M), вычтем 50 (L), получим 950 (LM). Следствие: 1950 — MLM вместо MCML

Случаи такой записи чисел (как правило, годов) часто встречаются в титрах телесериалов США. Например, для года 1998 — MIIM вместо MCMXCVIII.

С помощью римских цифр можно записывать и бо́льшие классы чисел. Для этого над теми цифрами, которые обозначают тысячи, ставится черта, а над цифрами, которые обозначают миллионы, — двойная черта. Исключение составляет цифра I; вместо черты сверху записывается цифра M, а начиная с миллиона — по одной черте сверху. Например, число 123123 будет выглядеть так:

CXXIIICXXIII

А миллион как I, но только не с одной, а с двумя чертами во главе: I

Применение

Автограф Б. Н. Ельцина 10 ноября 1988 года. Месяц указан римскими цифрами
Римские цифры, обозначающие день недели, на витрине одного из магазинов в Вильнюсе
Англосаксонская система марок углубления, используемая на корме клипера «Катти Сарк» (осадка — 6,7 метра)

В русском языке римские цифры используют в следующих случаях:

Римские цифры широко употребляли в Европе и СССР при указании даты для обозначения месяца года, например, 11/III-85 или 9.XI.89, это можно увидеть на многих архивных документах тех времён. Подобным образом, через косую черту, в том числе записывали дату урока в классных журналах, например, 24/II. Для указания дат рождения и смерти на надгробиях часто использовали особый формат, где месяц года также обозначали римскими цифрами, например, (25 ноября 1887 ~ 26 января 1943). Подобный формат в 1970—1980-х годах использовали в медицинских справках.

С переходом на компьютерную обработку информации форматы даты, основанные на римских цифрах, практически вышли из употребления.

В других языках сфера применения римских цифр может иметь особенности. В западных странах римскими цифрами нередко записывают номер года, например, на фронтонах зданий и в титрах видео-, кино- и телепродукции[3].

В современной Литве на дорожных знаках, на витринах магазинов, на вывесках предприятий римскими цифрами могут обозначать дни недели.

Юникод

Стандарт Юникода рекомендует использовать для представления римских цифр обычные латинские буквы[4]. Тем не менее стандарт включает также специальные символы для римских цифр как часть Числовых форм (англ. Number Forms)[5] в области знаков с кодами с U+2160 по U+2188. Например, MCMLXXXVIII может быть представлено в форме ⅯⅭⅯⅬⅩⅩⅩⅧ. Этот диапазон включает как строчные, так и прописные цифры для записи чисел от 1 (Ⅰ или I) до 12 (Ⅻ или XII), в том числе и комбинированные глифы для составных чисел, таких как 8 (Ⅷ или VIII), главным образом для обеспечения совместимости с восточноазиатскими наборами символов в таких промышленных стандартах, как JIS X 0213, где эти символы определены. Комбинированные глифы используются для представления чисел, которые ранее составлялись из отдельных символов (например, Ⅻ вместо его представления как Ⅹ и Ⅱ). В дополнение к этому, глифы существуют для архаичных[5] форм записи чисел 1000, 5000, 10 000, большой обратной C (Ɔ), поздней формы записи 6 (ↅ, похожей на греческую стигму: Ϛ), ранней формы записи числа 50 (ↆ, похожей на стрелку, указывающую вниз ↓⫝⊥[6]), 50 000, и 100 000. Маленькая обратная c, ↄ не включена в символы римских цифр, но включена в стандарт Юникод как прописная клавдиева буква Ↄ.

Код 0 1 2 3 4 5 6 7 8 9 A B C D E F
Значение[7] 1 2 3 4 5 6 7 8 9 10 11 12 50 100 500 1 000
U+2160
2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

216A

216B

216C

216D

216E

216F
U+2170
2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

217A

217B

217C

217D

217E

217F
Значение 1 000 5 000 10 000 100 6 50 50 000 100 000
U+2180
2180

2181

2182

2183

2185

2186

2187

2188

Отображение всех этих символов требует наличия программного обеспечения, поддерживающего стандарт Юникод, и шрифта, содержащего соответствующие этим символам глифы (например, шрифт Universalia).

Машинопись

Машинописные римские цифры в оглавлении

На пишущей машинке с русским шрифтом для написания отсутствующих латинских знаков используются визуально похожие русские буквы и арабская цифра 1, имеющая в машинописном шрифте написание I. Для L и D допускается использование Л и Д[8].

Римские цифры в машинописи[8][9]
Число I II III IV V VI VII VIII IX X L C D M
Машинопись 1 П Ш У У1 УП УШ Х Л С Д М

Регулярные выражения

Регулярное выражение для проверки римских цифр — ^(M{0,3})(D?C{0,3}|C[DM])(L?X{0,3}|X[LC])(V?I{0,3}|I[VX])$[10] В языке Perl для поиска римских цифр в строке можно использовать регулярное выражение m/\b((?:M{0,3}?(?:D?C{0,3}|C[DM])?(?:L?X{0,3}|X[LC])?(?:I{0,3}?V?I{0,3}|I[VX])))\b/gs.

Преобразование

Для преобразования чисел, записанных арабскими цифрами в римские, используются специальные функции.

Например, в английской версии Microsoft Excel и в любой версии OpenOffice.org Calc для этого существует функция ROMAN (аргумент; форма), в русской версии Microsoft Excel эта функция называется РИМСКОЕ(число; форма). Необязательный аргумент «форма» может принимать значения от 0 до 4, а также «Ложь» и «Истина». Отсутствие аргумента «Форма» или равенство его 0 или «Истина» даёт «классическую» (строгую) форму преобразования; значение 4 или «Ложь» даёт наиболее упрощённую; значения 1, 2, 3 дают промежуточные по строгости-упрощению варианты. Различия проявляются, например, на числах 45, 49, 495, 499 (указаны первые в диапазоне [1;3999]).

Пример применения функции РИМСКОЕ(число; форма)
форма 0 1 2 3 4
число
45 XLV VL VL VL VL
49 XLIX VLIV IL IL IL
495 CDXCV LDVL XDV VD VD
499 CDXCIX LDVLIV XDIX VDIV ID

Для нецелых значений аргумента «число» производится округление вниз до целого; если после этого значение оказывается больше 3999 или меньше 0, то функция возвращает «#Знач»; для значения 0 возвращается пустая ячейка.

Примечания

  1. Цифры и системы счисления Архивная копия от 22 ноября 2018 на Wayback Machine. Онлайн Энциклопедия Кругосвет.
  2. М. Я. Выгодский «Справочник по элементарной математике» Москва 1958 г. Государственное издательство физико-математической литературы. стр.62
  3. Beckham’s road to Roman Архивная копия от 1 мая 2020 на Wayback Machine // Би-би-си, 17 April, 2002
  4. Unicode Standard, 15.3 Архивная копия от 27 июня 2010 на Wayback Machine («For most purposes, it is preferable to compose the Roman numerals from sequences of the appropriate Latin letters.»)
  5. 1 2 Unicode Number Forms. Дата обращения: 30 марта 2009. Архивировано 25 марта 2009 года.
  6. Perry, David J. Proposal to Add Additional Ancient Roman Characters to UCS Архивная копия от 22 июня 2011 на Wayback Machine.
  7. Для первых двух строк
  8. 1 2 Березин, Борис Иванович. Школа машинописи. — М.: Легкая и пищевая промышленность, 1984. — С. 85. — 168 с.
  9. Озеран, Антонина Евгеньевна. Машинопись. — Минск: Вышэйшая школа, 1971. — С. 98. — 225 с. — ISBN 978-5-458-48020-8. Архивировано 25 мая 2023 года.
  10. Глава 31. Римская числовая нотация :: Идеи реализации. Дата обращения: 15 октября 2015. Архивировано 18 ноября 2015 года.
  11. "Наука и жизнь" N12 1986 стр.95, В.Птицын, г.Москва
  12. Автор - Кузнецов Евгений А.
  13. Автор - Кузнецов Евгений А., 1992 год

См. также

Kembali kehalaman sebelumnya