Сульфиновые кислотыСульфиновые кислоты (сульфикислоты) — класс кислородсодержащих органических кислот средней силы с общей формулой RSO(OH), где R — алкильный или арильный радикал. Являются твёрдыми малоустойчивыми веществами, в природе встречаются крайне редко[1]. Образуют устойчивые соли — сульфинаты[2][3]. Особенности строенияНа основании характерных для сульфиновых кислот реакцийтаутомерного равновесия двух форм сульфикислот: можно утверждать о наличииВторая таутомерная форма объясняет реакции образования сульфиновых кислот из хлорангидридов сульфоновых кислот действием восстановителей и образования сульфонов из сульфикислот при взаимодействии с галоидными алкилами — и там, и там неизменной остаётся группа —SO2—. Однако при этерификации сульфикислот спиртами в присутствии минеральных кислот образуются эфиры, отвечающие первой таутомерной форме: R—S(O)—OR'[4]. Полагают, что в большинстве случаев равновесие между двумя формами сульфикислот весьма условно и целиком сдвинуто в сторону изомера с гидроксильной группой —OH. Валентное состояние серы в этой форме находится между двухвалентным (сера сульфидная) и шестивалентным (сера сульфонильная)[1]. Однако при использовании в качестве растворителей диоксана или бензола сульфиновые кислоты находятся в растворе в виде смеси таутомерных форм, что подтверждается экспериментально полученными значениями дипольных моментов, которые оказались промежуточными между таковыми значениями для двух структур. Данные ИК- и УФ-спектров различных сульфиновых кислот и их эфиров говорят, однако, о превалировании формы с гидроксильной группой. В кристаллическом состоянии и в неполярных растворителях, к примеру в бензоле, имеют димерную структуру, что подтверждается данными ИК-спектров, значениями дипольных моментов, а также спектров комбинационного рассеяния[5]. Особенностью эфиров сульфиновых кислот является возможность разделить их на оптические антиподы, подобно окисям сульфидов. Поэтому им обычно приписывают пирамидальную структуру, в вершине которой располагается атом серы, что подтверждается данными ИК- и УФ-спектров. Такое расположение атомов очень устойчиво и полностью объясняет оптическую активность в случае, если функциональные группы, связанные с атомом серы, различны. Устойчивость окисей сульфидов, однако, выше: эфиры сульфиновых кислот легко претерпевают ауторацемизацию, к примеру, для октилового эфира пара-толуолсульфиновой кислоты оптическая активность уменьшается более чем в 2,5 раза при стоянии в течение 15 суток[4][5]. ИдентификацияНаиболее распространённым методом количественного анализа сульфиновых кислот является титрование стандартным раствором азотистой кислоты или нитрита натрия в кислом растворе:
Внешним капельным индикатором выступает иодкрахмальная бумага: в присутствии нитрита натрия она приобретает пурпурный цвет, тогда как до появления избытка вещества окраски не наблюдается[6]. Данный метод также применяется для определения содержания сульфиновой кислоты в её смеси с тиолами[7]. Распространённый метод качественного анализа — растворение исследуемого образца в холодной концентрированной серной кислоте в присутствии капли фенетола или анизола. При наличии в образце сульфиновых кислот наблюдается голубая окраска раствора. Также для анализа сульфиновых кислот используют ИК- и УФ-спектрометрию, анализ с помощью солей трёхвалентного железа, количественный анализ с помощью окисления гипохлоритом[6]. ПолучениеОтдельные сульфиновые кислоты встречаются в природе, образуясь при окислении тиолов в качестве интермедиатов. К примеру, таурин выделен из моллюсков, а цистеинсульфиновая кислота — интермедиат, образующийся в процессе окисления цистеина[1]. Существует несколько основных способов получения сульфиновых кислот. Восстановление сульфонильных производныхДля данного способа используют сульфонилгалогены[англ.] (фториды, бромиды, иодиды), арентиосульфонаты, сульфонамиды, сульфонилгидразиды и сульфонилгидразоны; наиболее часто восстанавливают сульфонилхлориды по причине их доступности. В роли восстановителей могут выступать представители двух типов реагентов, гетеролитически расщепляющих связь хлор—сера:
Окисление тиолов и дисульфидовДанный способ менее распространён по причине возможного переокисления. В качестве окислителей используют хлор, бром, иод, спиртовой раствор основания, кислород, разбавленный раствор перекиси водорода. Наиболее эффективный реагент, однако, — мета-хлорнадбензойная кислота[1]:
Использование сернистого газаВажным методом для получения арен- и алкансульфиновых кислот является взаимодействие диоксида серы с металлорганическими соединениями меди, алюминия, лития или магния: Распространённые методы получения аренсульфиновых кислот — разложение арендиазониевых солей с участием восстановителя (меди) и сернистого газа, а также реакция типа реакции Фриделя — Крафтса, реагентами в которой выступают сернистый газ, ароматические углеводороды и хлорид алюминия в качестве катализатора:
Последнюю реакцию используют в некоторых случаях и для получения алкансульфиновых кислот, в этом случае реагентами выступают алкены или алканы. Менее распространено фотохимическое сульфинилирование алканов с участием сернистого газа как препаративный метод получения алкансульфиновых кислот[1]. Использование сульфоновВозможно нуклеофильное замещение по α-углеродному атому либо 1,2-элиминирование для получения сульфиновых кислот. Неактивированные сульфоны расщепляются под действием сильного основания при повышенной температуре. В роли таковых оснований выступают натрий в жидком аммиаке или литий в метиламине:
Для получения сульфонов часто используется реакция 2,4-динитробензолсульфенилхлорида с ароматическими углеводородами в присутствии хлорида алюминия в качестве катализатора. При данном взаимодействии образуются сульфиды, которые окислением переводят в сульфоны[1]. Важным методом является перегруппировка Смайлса[англ.] — действие сильных оснований на орто-замещённые ароматические сульфоны для получения ароматических сульфиновых кислот. Метод представляет собой внутримолекулярное нуклеофильное замещение у атома углерода в ароматическом кольце[8]. СвойстваПредставляют собой твёрдые вещества или вязкие масла. В воде полностью диссоциированы, однако диссоциация подавляется при наличии соляной кислоты[2]. Кислоты средней силы, чей показатель константы кислотности находится в диапазоне 2,5—3. По этому значению сульфиновые кислоты располагаются между соответствующими сульфоновыми и карбоновыми кислотами. Сульфиновая группа имеет электроотрицательность того же порядка, что и циангруппа —CN[2][9].
В химических реакциях выступают в роли нуклеофильных реагентов, нуклеофильным центром в подавляющем большинстве случаев является атом серы. Для сульфиновых кислот характерен набор характерных реакций[1]:
Отдельно стоит упомянуть свойства сульфинат-ионов, которые представляют собой заряженные частицы общей формулы R—SO2—. В частности, они реагируют с эпоксидами с образованием 2-гидроксисульфонов, а также, как и сульфиновые кислоты, вступают в реакцию с сульфенилхлоридами[англ.], что приводит к получению тиолсульфинатов[англ.], и галогенами, в частности хлором и бромом, что позволяет синтезировать сульфонилгалогениды[1]. Непростой задачей является отщепление сульфинильной группы. Для ряда нитроароматических производных десульфинилирование можно произвести в сильнокислой либо сильноосновной среде. В случае с аренсульфиновыми кислотами для данной цели используют хлорид таллия(III), а также соли палладия(II) для получения биарилов. Для арил- и алкилсульфиновых кислот используют также хлорид ртути(II), в результате получают арил- и алкилмеркурийхлориды в виде кристаллических твёрдых веществ[6]. Стоит отметить, что при действии некоторых ароматических сульфиновых кислот наблюдается цис-транс-изомерия алкенов без сдвига двойной связи, что используется в органическом синтезе. К примеру, (Z)-метиловый эфир олеиновой кислоты данным способом переводится в смесь изомеров, 81 % которой составляет (E)-изомер[1]. ПрименениеСлужат промежуточными продуктами при получении сульфонатов, легко окисляются до сульфокислот, что используется при получении последних. Кроме этого, хлорирование сульфиновых кислот — последняя стадия в процессе получения сульфохлоридов из производных тиолов. Также представляют интерес в теоретическом значении, являясь возможными промежуточными продуктами низшей валентности серы, которые могут образовываться из соединений, содержащих серу, при окислении различными веществами при различных условиях[11]. Широко распространено получение сульфогалогенидов галогенированием солей сульфиновых кислот. В частности, сульфохлориды часто получают из сульфинатов, полученных реакцией Гриньяра: Особенностью данного метода является отсутствие необходимости наличия донора кислорода, поэтому реакции проводят в безводной среде, используя различные окислители: газообразный хлор, сульфурилхлорид и другие. Применяются различные растворители, к примеру, для получения 2-этилгексилсульфоиодида используют смесь бензола и эфира, так как он не может быть получен в водной среде. Достоинства метода — хорошие выходы продуктов, их исключительная чистота, лёгкость и быстрота получения необходимых веществ, что было подтверждено синтезом фенилметан- и 2,3-диметилбутансульфохлорида. Считают, что такой способ получения сульфогалогенидов превосходит классическую обработку реактива Гриньяра сульфурилхлоридом. К примеру, рассматриваемый метод применяется для синтеза этансульфобромида. Получение сульфогалогенидов галогенированием эфиров алкил- и арилсульфиновых кислот также распространено. Необходимые сложные эфиры синтезируют из соответствующих дисульфидов или тиолов. Данный метод используется в тех случаях, когда по тем или иным причинам невозможно прямое галогенирование дисульфидов или тиолов[12]. Соли сульфиновых кислот (к примеру, ронгалит[англ.]) и их сложные эфиры также применяются в качестве восстановителей в органическом синтезе[8]. Примечания
Литература
|